• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 37
  • 15
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 128
  • 128
  • 40
  • 36
  • 36
  • 29
  • 25
  • 19
  • 15
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Genuine geometric quantum gates induced by non-cyclic geodesic evolution of computational basis

Eivarsson, Nils January 2022 (has links)
To reach the error threshold required to successfully perform error-correcting algorithms in quantum computers, geometric quantum gates have been considered because of their natural resilience against noise. Non-cyclic geometric gates have been proposed to reduce the run time of conventional geometric gates, to further guard against decoherence. However, while these proposed gates remove the dynamical phase from the computational basis, they do not in general remove it from the eigenstates of the time evolution operator. For a non-cyclic gate to genuinely be considered geometric the dynamical phase should be removed from both the computational basis and the eigenstates. Here, a scheme for finding genuine non-cyclic geometric gates is proposed. The gates are designed to evolve the computational basis along non-cyclic paths, consisting of two geodesic segments, chosen such that the dynamical phase is removed from the eigenstates. The gates found with this scheme did not have shorter runtimes than cyclic gates, but it was possible to implement any gate with this scheme. The findings are important for the understanding of how general quantum computations can be implemented with geometric gates.
62

QUANTUM ALGORITHMS FOR SUPERVISED LEARNING AND OPTIMIZATION

Raja Selvarajan (14210861) 06 December 2022 (has links)
<p>We demonstrate how quantum machine learning might play a vital role in achieving moderate speedups in machine learning problems and might have scope for providing rich models to describe the distribution underlying the observed data. We work with Restricted Boltzmann Machines to demonstrate the same to supervised learning tasks. We compare the relative performance of contrastive divergence with sampling from Dwave annealer on bars and stripes dataset and then on imabalanced network security data set. Later we do training using Quantum Imaginary Time Evolution, that is well suited for the Noisy Intermediate-Scale Quantum era to perform classification on MNIST data set.  </p>
63

Implementation of a CNOT gate in two cold Rydberg atoms by the nonholonomic control technique.

Brion, E., Comparat, D., Harel, Gil January 2006 (has links)
No / We present a demonstrative application of the nonholonomic control method to a real physical system composed of two cold Cesium atoms. In particular, we show how to implement a CNOT quantum gate in this system by means of a controlled Stark field.
64

Exterior calculus and fermionic quantum computation

Vourdas, Apostolos 20 September 2018 (has links)
Yes / Exterior calculus with its three operations meet, join and hodge star complement, is used for the representation of fermion-hole systems and for fermionic analogues of logical gates. Two different schemes that implement fermionic quantum computation, are proposed. The first scheme compares fermionic gates with Boolean gates, and leads to novel electronic devices that simulate fermionic gates. The second scheme uses a well known map between fermionic and multi-qubit systems, to simulate fermionic gates within multi-qubit systems.
65

Complexity Bounds for Search Problems

Nicholas Joseph Recker (18390417) 18 April 2024 (has links)
<p dir="ltr">We analyze the query complexity of multiple search problems.</p><p dir="ltr">Firstly, we provide lower bounds on the complexity of "Local Search". In local search we are given a graph G and oracle access to a function f mapping the vertices to numbers, and seek a local minimum of f; i.e. a vertex v such that f(v) <= f(u) for all neighbors u of v. We provide separate lower bounds in terms of several graph parameters, including congestion, expansion, separation number, mixing time of a random walk, and spectral gap. To aid in showing these bounds, we design and use an improved relational adversary method for classical algorithms, building on the prior work of Scott Aaronson. We also obtain some quantum bounds using the traditional strong weighted adversary method.</p><p dir="ltr">Secondly, we show a multiplicative duality gap for Yao's minimax lemma by studying unordered search. We then go on to give tighter than asymptotic bounds for unordered and ordered search in rounds. Inspired by a connection through sorting with rank queries, we also provide tight asymptotic bounds for proportional cake cutting in rounds.</p>
66

Implementing two-qubit gates along paths on the Schmidt sphere

Johansson Saarijärvi, Max January 2022 (has links)
Qubits (quantum bits) are what runs quantum computers, like a bit in classical computers. Quantum gates are used to operate on qubits in order to change their states. As such they are what ”programmes” a quantum computer. An unfortunate side effect of quantum physics is that coupling a quantum system (like our qubits) to an outside environment will lead to a certain loss of information. Reducing this decoherence effect is thus vital for the function of a quantum computer. Geometric quantum computation is a method for creating error robust quantum gates by using so called geometric phases which are solely reliant on the geometry of the evolution of the system. The purpose of this project has been to develop physical schemes of geometric entangling two-qubit gates along the Schmidt sphere, a geometric construct appearing in two-qubit systems. Essentially the overall aim has been to develop new schemes for implementing robust entangling quantum gates solely by means of interactions intrinsic to the computational systems. In order to create this gate four mutually orthogonal states were defined which together spanned the two-qubit state space. Two of the states were given time dependent variables containing a total of two angles,which were used to parameterize the Schmidt sphere. By designing an evolution for these angles that traced out a cyclical evolution along geodesic lines a quantum gate with exclusively geometric phases could be created. This gate was dubbed the ”Schmidt gate” and could be shown to be entangling by analyzing a change in the concurrence of a two qubit system. Two Hamiltonians were also defined which when acted upon the predefined system of states would give rise to the aforementioned evolution on the Schmidt sphere. The project was successful in creating an entangling quantum gate which could be shown by looking at difference in the concurrence of the input and output state of a two-qubit system passing through the gate.
67

Computação quântica baseada em medidas projetivas em sistemas quânticos abertos / Measurement-based quantum computation in open quantum systems

Arruda, Luiz Gustavo Esmenard 20 June 2011 (has links)
Usamos um modelo exatamente solúvel para calcular a dinâmica da fidelidade de uma computação baseada em medidas projetivas cujo sistema interage com um meio ambiente comum que insere erros de fase. Mostramos que a fidelidade do estado de Cluster canônico oscila como função do tempo e, como consequência, a computação quântica baseada em medidas projetivas pode apresentar melhores resultados computacionais mesmo para um conjunto sequencial de medidas lentas. Além disso, apresentamos uma condição necessária para que a dinâmica da fidelidade de um estado quântico geral apresente um comportamento não-monotônico. / We use an exact solvable model to calculate the gate fidelity dynamics of a measurement-based quantum computation that interacts with a common dephasing environment. We show that the fidelity of the canonical cluster state oscillates as a function of time and, as a consequence, the measurement-based quantum computer can give better computational results even for a set of slow measurement sequences. Furthermore, we present a necessary condition to the fidelity dynamics of a general quantum state presents a non-monotonical shape.
68

Estudo da decoerência e da dissipação quântica durante a evolução temporal de dois qubits ditadas por operações unitárias controladas / Study of quantum decoherence and dissipation, during a two qubits temporal evolution controlled by unitary operations

Fanchini, Felipe Fernandes 23 August 2004 (has links)
Nessa dissertação, abordamos o problema de dois qubits interagindo com campos externos e entre si controladamente, de acordo com um Hamiltoniano considerado realista para implementação da porta lógica quântica XOR. Introduzimos acoplamentos entre as observáveis do sistema de dois qubits e um banho de osciladores harmônicos a fim de tratarmos o problema da dissipação e da decoerência. Primeiramente nós consideramos o limite no qual a decoerência é mais rápida que qualquer processo gerado pelo Hamiltoniano do sistema. Prosseguimos então, através do método numérico conhecido como Integrador Unitário, com o estudo da matriz densidade do sistema durante a operação da porta lógica quântica sem incluir, inicialmente, o acoplamento com o banho de osciladores harmônicos. Finalmente, implementamos o método numérico conhecido como Propagador quase adiabático para estudar a decoerência e a dissipação durante a operação da porta lógica quântica XOR, a fim de analisarmos os aspectos perturbativos do sistema quântico de dois qubits. / In this dissertation, we approach the problem of two qubits interading with themselves and with externa1 fields in a controlled way, according to a Hamiltonian considered realistic to implement the XOR quantum gate. We introduce couplings between the observables of the two-qubits system and of a bath of harmonic oscillators, to treat the problems of dissipation and decoherence. Preliminarly, we consider the limit in which decoherence is faster than any process dictated by the Hamiltonian evolution of the system. Then, through a unitary-integrator numerical method, we proceed with the study of the evolution of the density matrix of the system during the operation of the logical quantum gate, initially, without the coupling with the bath of harmonic oscillators. Finally, we use the quasiadiabatic path integral method to study the dissipation and decoherence during the logical operation, through the inclusion of the bath.
69

INVARIANTES DINÂMICOS APLICADOS EM COMPUTAÇÃO QUÂNTICA E INFORMAÇÃO QUÂNTICA PARA RESSONÂNCIA MAGNÉTICA NUCLEAR

Uhdre, Gustavo Mehanna 27 March 2017 (has links)
Made available in DSpace on 2017-07-21T19:25:55Z (GMT). No. of bitstreams: 1 Gustavo Uhdre.pdf: 2107286 bytes, checksum: 7ad35f5b79eaca9ffa73277e4eda912d (MD5) Previous issue date: 2017-03-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work aims to compare the eficiency between two alternative ways of performing quantum computing protocols. The one is called adiabatic quantum computation, which is to realize through the concepts of the adiabatic theorem. The second is called nonadiabatic quantum computation, which is performed through ideas of dynamic invariants. These protocols will be presented in a theoretical context of Nuclear Magnetic Resonance, without the experimental realization. / Este trabalho tem como objetivo comparar a eficiência entre duas maneiras alternativas de realizar protocolos de computação quântica. A primeira, é chamada de computação quântica adiabática, que é realizada através dos conceitos do teorema adiabático. A segunda, é chamada de computação quântica não adiabática, que é realizada através das ideias de invariantes dinâmicos. Esses protocolos serão apresentados em um contexto teórico de Ressonância Magnética Nuclear, sem a realização experimental.
70

LinDCQ : uma linguagem para descrição de circuitos quânticos que possibilita o cálculo das operações na GPU utilizando JOCL

GOMES, Mouglas Eugênio Nasário 27 July 2015 (has links)
Submitted by Mario BC (mario@bc.ufrpe.br) on 2017-02-08T13:00:48Z No. of bitstreams: 1 Mouglas Eugenio Nasario Gomes.pdf: 2441879 bytes, checksum: 71064821936a79cf37326006ed006c46 (MD5) / Made available in DSpace on 2017-02-08T13:00:48Z (GMT). No. of bitstreams: 1 Mouglas Eugenio Nasario Gomes.pdf: 2441879 bytes, checksum: 71064821936a79cf37326006ed006c46 (MD5) Previous issue date: 2015-07-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This paper presents the LinDCQ tool — a description language and programming quantum circuits — which enables the creation of quantum circuits with calculus of operations performed in parallel on the GPU, using JOCL. The tool also allows the generation of graphically circuit. Used as a mechanism to generate grammars of languages and automata as language recognizer and the regular expression engine. In this context a discussion of the phases of compilers and on quantum computation is presented as well as an explanation of the main technologies used for the development of quantum circuits. LinDCQ The tool consists of: grammar in BNF form (Backus-Naur-Form), the compiler verifies that the incidence of errors in the code to be executed, a graphical interface to facilitate the programming features that allow the construction of the circuit graphically and parallel algorithms JOCL to perform operations that require greater computational cost in the GPU. At the end of an experiment is performed in order to assess the usability of the tool, to thereby ensure a higher level of user acceptance, facilitating interaction thereof with the tool developed in this work. / Este trabalho apresenta a ferramenta LinDCQ - uma linguagem de descrição e programação de circuitos quânticos — a qual possibilita a criação de circuitos quânticos com cálculo das operações realizados de forma paralela na GPU, utilizando JOCL. A ferramenta também permite a geração do circuito de forma gráfica. Utiliza gramáticas como mecanismo na geração de linguagens e autômatos como mecanismo reconhecedor de linguagens e de expressões regulares. Nesse contexto é apresentada uma discussão sobre as fases dos compiladores e sobre a computação quântica, assim como uma explanação sobre as principais tecnologias utilizadas para o desenvolvimento de circuitos quânticos. A ferramenta LinDCQ é composta de: gramática no formato BNF (Backus-Naur-Form), compilador que verifica a incidência de erros no código a ser executado, de uma interface gráfica com características facilitadoras à programação que permite a construção do circuito de forma gráfica e de algoritmos paralelos em JOCL para executar as operações que requerem maior custo computacional na GPU. Ao final é realizado um experimento com o intuito de aferir a usabilidade da ferramenta, para, deste modo, garantir um maior um nível de aceitação do usuário, facilitando a interação do mesmo com a ferramenta desenvolvida nesta dissertação.

Page generated in 0.1202 seconds