• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 31
  • 28
  • 27
  • 23
  • 17
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 344
  • 344
  • 68
  • 62
  • 37
  • 34
  • 31
  • 31
  • 26
  • 26
  • 25
  • 25
  • 24
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Design and Characterization of InGaN/GaN Dot-in-Nanowire Heterostructures for High Efficiency Solar Cells

Cheriton, Ross 20 July 2018 (has links)
Light from the sun is an attractive source of energy for its renewability, supply, scalability, and cost. Silicon solar cells are the dominant technology of choice for harnessing solar energy in the form of electricity, but the designs are approaching their practical efficiency limits. New multijunction designs which use the tunable properties of the more expensive III-V semiconductors have historically been relegated to space applications where absolute power conversion efficiency, resilience to radiation, and weight are more important considerations than cost. Some of the more recent developments in the field of semiconductor materials are the so-called III-nitride materials which mainly use either indium, aluminum or gallium in combination with nitrogen. Indium gallium nitride (InGaN) is one of these III-nitride semiconductor alloys that can be tailored to span the vast majority of the solar spectrum. While InGaN growth traditionally requires expensive substrate materials such as sapphire, three-dimensional nanowire growth modes enable high quality lattice mismatched growth of InGaN directly on silicon without a metamorphic buffer layer. The absorption and electronic properties of InGaN can also be tuned by incorporating it into quantum confined regions in a GaN host material. This opens up a route towards cost-effective, high efficiency devices such as light emitted diodes and solar cells which can operate over a large range of wavelengths. The combination of the two material systems of InGaN/GaN and silicon can marry the low cost of silicon wafers with the desirable optoelectronic properties of III-nitride semiconductors. This thesis investigates the potential for highly nanostructured InGaN/GaN based devices using quantum-dot-in-nanowire designs as novel solar cells which can enable intermediate band absorption effects and multiple junctions within a single nanowire to absorb more of the solar spectrum and operating more efficiently. Such semiconductor nanostructures can in principle reach power conversion efficiencies of over 40\% on silicon, with a cost closer to conventional silicon solar cells as opposed to methods which use non-silicon substrates. In the primary strategy, the nanowires contain InGaN quantum dots which act as photon absorption/carrier generation centres to sequentially excite photons within the large band gap semiconductor. By using this intermediate band of states, large operating voltages between contacts can be maintained without sacrificing the collection of long wavelength solar photons. In this work, we characterize the properties of such nanowires and experimentally demonstrate sub-bandgap current generation in a large area InGaN/GaN dot-in-nanowire solar cell. Experimental characterization of InGaN / GaN quantum dots in nanowires as both LEDs and solar cells is performed to determine the nanowire material parameters to understand how they relate to the nanowire device performance. Multiple microscopy techniques are performed to determine the nanowire morphology and contact effectiveness. Optical characterization of bare and fabricated nanowires is used to determine the anti-reflection properties of nanowire arrays. Photoluminescence and electroluminescence spectroscopy are performed. Illuminated current-voltage characteristics and quantum efficiencies are determined. Specular and diffuse reflectivities are measured as a function of wavelength. Technology computer-aided design (TCAD) software is used to simulate the performance of the overall nanowire device. The contribution from quantum dots or quantum wells is simulated by solving for the carrier wavefunctions and density of states with the quantum structures. The discretized density of states from the quantum dots is modelled and used in a complete drift-diffusion device simulation to reproduce electroluminescence results. The carrier transport properties are modified to demonstrate effects on the overall device performance. An alternate design is also proposed which uses an InGaN nanowire subcell on top of a silicon bottom subcell. The dual-junction design allows a broader absorption of the solar spectrum, increasing the operating voltage through monolithically grown series-connected, current-matched subcells. The performance of such a cell is simulated through drift-diffusion simulations of a dual-junction InGaN/Si solar cell. The effects of switching to a nanowire subcell based on the nanowires studied in this thesis is discussed.
232

Photoluminescence Enhancement of Ge Quantum Dots by Exploiting the Localized Surface Plasmon of Epitaxial Ag Islands

January 2015 (has links)
abstract: This dissertation presents research findings regarding the exploitation of localized surface plasmon (LSP) of epitaxial Ag islands as a means to enhance the photoluminescence (PL) of Germanium (Ge) quantum dots (QDs). The first step of this project was to investigate the growth of Ag islands on Si(100). Two distinct families of Ag islands have been observed. “Big islands” are clearly faceted and have basal dimensions in the few hundred nm to μm range with a variety of basal shapes. “Small islands” are not clearly faceted and have basal diameters in the 10s of nm range. Big islands form via a nucleation and growth mechanism, and small islands form via precipitation of Ag contained in a planar layer between the big islands that is thicker than the Stranski-Krastanov layer existing at room-temperature. The pseudodielectric functions of epitaxial Ag islands on Si(100) substrates were investigated with spectroscopic ellipsometry. Comparing the experimental pseudodielectric functions obtained for Si with and without Ag islands clearly identifies a plasmon mode with its dipole moment perpendicular to the surface. This observation is confirmed using a simulation based on the thin island film (TIF) theory. Another mode parallel to the surface may be identified by comparing the experimental pseudodielectric functions with the simulated ones from TIF theory. Additional results suggest that the LSP energy of Ag islands can be tuned from the ultra-violet to the infrared range by an amorphous Si (α-Si) cap layer. Heterostructures were grown that incorporated Ge QDs, an epitaxial Si cap layer and Ag islands grown atop the Si cap layer. Optimum growth conditions for distinct Ge dot ensembles and Si cap layers were obtained. The density of Ag islands grown on the Si cap layer depends on its thickness. Factors contributing to this effect may include the average strain and Ge concentration on the surface of the Si cap layer. The effects of the Ag LSP on the PL of Ge coherent domes were investigated for both α-Si capped and bare Ag islands. For samples with low-doped substrates, the LSPs reduce the Ge dot-related PL when the Si cap layer is below some critical thickness and have no effect on the PL when the Si cap layer is above the critical thickness. For samples grown on highly-doped wafers, the LSP of bare Ag islands enhanced the PL of Ge QDs by ~ 40%. / Dissertation/Thesis / Doctoral Dissertation Physics 2015
233

Boîtes quantiques de semi-conducteurs nitrures pour des applications aux capteurs opto-chimiques / III-nitride quantum dots for application in opto-chemical sensors

Das, Aparna 13 June 2012 (has links)
Ce travail de thèse a porté sur la synthèse de boîtes quantiques (BQs) de semi-conducteurs nitrures orientés (11-22) ou (0001) par épitaxie par jets moléculaires à plasma d'azote, pour des applications aux capteurs chimiques pour la détection du niveau de pH, d'hydrogène ou des hydrocarbures dans des environnements gazeux ou liquides. Dans la première partie de ce manuscrit, je décri la synthèse des couches bidimensionnelles semi-polaires (11-22) : des couches binaires (AlN, GaN, and InN) et des ternaires (AlGaN et InGaN), qui sont requises pour le contact de référence dans les transducteurs et aussi pour établir une connaissance de base pour comprendre la transition dès la croissance bidimensionnelle à la croissance tridimensionnel des BQs. Un résultat particulièrement relevant est l'étude de la cinétique de croissance et l'incorporation de l'indium dans les couches d'InGaN(11-22). De même que pour InGaN polaire (0001), les conditions optimales de croissance pour l'orientation cristallographique semi-polaire correspondent à la stabilisation de 2 ML d'In sur la surface, en excellent accord avec des calculs théoriques. Les limites de la fenêtre de croissance en termes de température du substrat et de flux d'In sont les mêmes pour les matériaux semi-polaire et polaires. Cependant, j'ai constaté une inhibition de l'incorporation de l'In dans les couches semi-polaires, même pour une température en dessous du seuil de la ségrégation pour l'InGaN polaire. Dans une deuxième étape, j'ai fabriqué des super-réseaux de BQs de GaN/AlN et InGaN/GaN, à la fois dans l'orientation polaire et semi-polaire. Les mesures de photoluminescence et de photoluminescence en temps résolu confirment la réduction du champ électrique interne dans les boîtes semi-polaires. D'autre part, les BQs semi-polaires à base d'InGaN doit relever le défi de l'incorporation d'In dans cette orientation cristallographique. Pour surmonter ce problème, l'influence de la température de croissance sur les propriétés des boîtes quantiques InGaN polaires et semi-polaires a été étudiée, en considérant la croissance à haute température (TS = 650–510 °C, où la désorption d'In est active) et à basse température (TS = 460–440 °C, où la désorption d'In est négligeable). J'ai démontré que les conditions de croissance à faible TS ne sont pas compatibles avec le plan polaire, tandis qu'ils fournissent un environnement favorable au plan semi-polaire pour améliorer l'efficacité quantique interne de nanostructures InGaN. Enfin, j'ai synthétisé un certain nombre de transducteurs à BQs de GaN/AlN et InGaN/GaN selon les axes de croissance polaire et semi-polaire. Dans chaque cas, les conditions de croissance pour atteindre la fourchette spectrale ciblée (420-450 nm d'émission à avec une couche contact transparente pour des longueurs d'onde plus courtes que 325 nm) ont été identifiés. L'influence d'un champ électrique externe sur la luminescence des transducteurs ont confirmé que la meilleure performance (plus grande variation de la luminescence en fonction de la polarisation) a été fournie par des structures à base de BQs d'InGaN/GaN. Avec ces données, les spécifications des transducteurs opto-chimiques ont été fixées : 5 perides de BQs d'InGaN/GaN sur une couche contact d'Al0.35Ga0.65N:Si). Puis, j'ai synthétisé un certain nombre de ces transducteurs afin d'obtenir un aperçu sur la reproductibilité, limites et les étapes critiques du processus de fabrication. En utilisant ces échantillons, nous avons réalisé un système capteur intégré qui a été utile pour le suivi de la valeur du pH de l'eau. / This thesis work has focused on the synthesis of (In)GaN-based quantum dot (QD) structures by plasma-assisted molecular-beam epitaxy (PAMBE), deposited in both polar (0001) and semipolar (11-22) crystallographic orientations, for application as optical transducers for chemical sensors for detection of pH levels, and hydrogen or hydrocarbon concentrations in gas or liquid environments. In the first part of this work, I describe the synthesis of semipolar-oriented two-dimensional layers: binary alloys (AlN, GaN and InN) and ternary alloys (AlGaN and InGaN), which are required for the reference contact of the transducers and set the basic know-how to understand the transition from two-dimensional growth to three-dimensional QD nanostructures. It is particularly relevant the study of indium kinetics and indium incorporation during the PAMBE growth of InGaN(11-22) layers. Similarly to (0001)-oriented InGaN, optimum growth conditions for this semipolar crystallographic orientation correspond to the stabilization of 2 ML of In on the growing InGaN surface, in excellent agreement with first-principles calculations. The limits of the growth window in terms of substrate temperature and In flux lie at same values for polar and semipolar materials. However, I observe an inhibition of the In incorporation in semipolar layers even for substrate temperatures below the segregation threshold for polar InGaN. In a second stage, I report the successful fabrication of superlattices (SLs) of GaN/AlN and InGaN/GaN QDs, both in polar and semipolar orientations. Photoluminescence and time-resolved photoluminescence confirmed the reduction of the internal electric field in the semipolar GaN/AlN QDs in comparison with polar structures. On the other hand, semipolar InGaN QDs must face the challenge of In incorporation in this crystallographic orientation. To overcome this problem, the influence of the growth temperature on the properties of the polar and semipolar InGaN QDs has been studied, considering growth at high temperature (TS = 650–510 °C, where In desorption is active) and at low temperature (TS = 460–440 °C, where In desorption is negligible). I demonstrate that low-TS growth conditions are not compatible with polar plane whereas they provide a favorable environment to semipolar plane to enhance the internal quantum efficiency of InGaN nanostructures. Finally, I have synthesized a number of GaN/AlN and InGaN/GaN QD optical transducers, grown in polar and semipolar orientations. In each case, the growth conditions to attain the targeted spectral range (emission at 420-450 nm with buffer transparent for wavelengths shorter than 325 nm) were identified. The influence of an external electric field on the luminescence of the transducers confirmed that the best performance (larger variation of the luminescence as a function of bias) was provided by InGaN/GaN QD structures. With this feedback, the specifications of the targeted opto-chemical transducer structures have been established (5 InGaN/GaN QD layers on Al0.35Ga0.65N:Si). Then, I have synthesized a number of InGaN/GaN opto-chemical transducers in order to get an insight on the reproducibility, limitations and critical steps in the fabrication process. Using these samples, we have achieved an integrated sensor system based on polar InGaN QD SLs, and the system was useful for monitorization of the pH value of water.
234

Spintronique moléculaire : étude de la dynamique d'un spin nucléaire unique / Electronic read-out of a single nuclear spin based on a molecular spin transistor

Vincent, Romain 06 December 2012 (has links)
Cette thèse se situe à la croisée de trois domaines : la spintronique qui s'attache à utiliser le degré de liberté du spin de l'électron afin de fabriquer de nouveaux dispositifs électroniques; l'électronique moléculaire qui cherche à profiter des progrès de la chimie moderne afin de fournir des alternatives au tout semi-conducteur de la micro-électronique; le magnétisme moléculaire qui cherche à synthétiser des aimants moléculaires aux propriétés toujours plus riches. Notre travail a consisté à produire un dispositif électronique à base d'aimant moléculaire et d'utiliser le spin de l'électron afin d'étudier les propriétés magnétiques à l'échelle d'une molécule. Des dispositifs semblables pourraient, dans l'avenir, constituer l'une des briques élémentaires de l'information quantique. Nous avons pour cela opté pour un transistor moléculaire à effet de champ, ayant pour canal un aimant moléculaire aux propriétés magnétiques bien connues : le Terbium double-decker ou TbPc2. Grâce à ce dispositif, nous avons, dans un premier temps, mis en évidence le retournement de l'aimantation d'une molécule unique par effet tunnel ou QTM (quantum tunneling of the magnetization). En effet, nous avons démontré que ce retournement entraînait une modification soudaine de la conductance de notre système. En effectuant une étude statistique sur les valeurs du champ de retournement, nous avons mis en évidence la présence de résonances que nous avons pu attribuer au phénomène de QTM. Nous avons également mesuré l'état d'un spin nucléaire unique : chaque résonance étant associée à un état de spin nucléaire. Nous avons étudié la température du spin nucléaire et montré que celle-ci pouvait être influencée par l'environnement électrostatique du système. En outre, le temps de vie d'un état de spin nucléaire a été extrait et estimé à quelques secondes, vérifiant que le système était faiblement perturbé par notre technique de mesure. Ces travaux jettent les bases de la construction du premier Qbit à base d'aimants moléculaires. Par des techniques de radiofréquence, le spin nucléaire pourrait être manipulé, la lecture se faisant ensuite par une mesure en conductance. / This PhD thesis is at a cross-road between three different fields : the spintronics which uses the spin degree of freedom of the electron to build new devices ; the molecular electronics which tries to take advantage of the new development of the chemistry, to give a workaround to the all semiconductor paradigm of the microelectronics industry; and the molecular magnetism which synthesizes molecular magnet with properties of an increasing richness. Our work has been dedicated to the fabrication of a molecular magnet based electronic device with which we could use the spin of the electron to study the magnetic properties at a single molecule level. Such device could, in the future, be used in the field of quantum information. We have decided to fabricate a field effect molecular transistor in which a well known molecular magnet, the Terbium double-decker or TbPc2, acts as a channel. Thanks to this device, we evidenced the quantum tunnelling of the magnetization (QTM) at single molecule level. We demonstrated that the magnetic moment reversal induces an abrupt change in the differential conductance of the system. By performing a statistical study, we highlighted four resonances that were attributed to QTM. We also measured a single nuclear spin state : each resonance being directly associated with one particular nuclear spin state. We studied the nuclear spin temperature and showed that it could be influenced by the electrostatic environment. Furthermore, the spin state lifetime was assessed and estimated to few seconds, highlighting the low invasive character of our measurement technique. This work give the foundation of the first molecular magnet based Qbit. With radio frequency techniques, the nuclear spin could be manipulated, the readout being performed through conductance measurement.
235

Sintonizador termoelétrico assistido por férmions de Majorana / Majorana fermion-assisted thermoelectric tuner

Santos, André Ramalho dos 30 November 2017 (has links)
Submitted by ANDRE RAMALHO DOS SANTOS null (ramalho_inf@yahoo.com.br) on 2018-02-14T03:20:16Z No. of bitstreams: 1 Dissertação André Ramalho.final.pdf: 2789018 bytes, checksum: d4170ea3aaec8f302b447a0aac5e5986 (MD5) / Approved for entry into archive by Ana Paula Santulo Custódio de Medeiros null (asantulo@rc.unesp.br) on 2018-02-14T16:54:15Z (GMT) No. of bitstreams: 1 santos_ar_me_rcla.pdf: 2620534 bytes, checksum: cb88b11f48c3fc7b2fef3c938febb8e0 (MD5) / Made available in DSpace on 2018-02-14T16:54:15Z (GMT). No. of bitstreams: 1 santos_ar_me_rcla.pdf: 2620534 bytes, checksum: cb88b11f48c3fc7b2fef3c938febb8e0 (MD5) Previous issue date: 2017-11-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Nós estudamos teoricamente como o calor e a eletricidade são afetados pela sobreposição de dois férmions de Majorana (MFs, de Majorana fermions em Inglês), os quais estão isolados nas bordas de um fio topológico de Kitaev, em particular, na forma de “ferradura”. É considerado que esse fio está assimetricamente acoplado a um único ponto quântico (QD, de Quantum dot em Inglês) hibridizado com contatos metálicos. Em baixas temperaturas e dependente do nível de energia desse QD, nós mostramos que ao ajustar a assimetria acima, as respostas ressonantes das condutâncias termoelétricas mudam inesperadamente de forma drástica. Assim, propomos como aplicação, um sintonizador termoelétrico em nanoescala assistido por MFs. / We study theoretically in a topological U-shaped Kitaev wire, with Majorana fermions (MFs) on the edges, how heat and electricity are affected by them when found overlapped. The asymmetric regime of their couplings with a single quantum dot (QD) hybridized with metallic leads is considered. At low temperatures and dependent upon the QD energy level, we show that by tuning this asymmetry, the resonance positions of the thermoelectrical conductances change drastically. Thereby, the tuner of heat and electricity here proposed is constituted.
236

Simulação computacional da produção de emaranhamento em ponto quântico caótico não ideal para ensembles de Wigner-Dyson

Santos, Eduardo Henrique dos 31 July 2015 (has links)
Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / e recent advances in technology require an increasingly complex treatment from science. Devices intensely miniaturized especially cannot be treated with classical physics only. e quantum approach becomes essential when the size of the conductors reaches the order of the electron characteristic lengths. Systems in this regime exhibit some important features, such as quantum interference and quantization of some quantities, and are named mesoscopic systems. Entanglement is a property with large technological applicability and can only be explained with the quantum approach. e quantum dot is very useful as mesoscopic entangler of electrons. e electron transport in a quantum dot can be described by the scattering matrix. e transmission eigenvalues obtained from the scattering matrix provide some quantities related to the electron transport, including the quanti er of entanglement. In this work we study statistically the entanglement production in a chaotic quantum dot (CCD) with nonideal contacts. ese CCDs are modeled as scattering centers attached to two wave guides having potential barriers and the electron transport is described by random scattering matrices.We consider time reversal and spin rotation symmetries for the cavities so that the scattering matrices belong to theWigner-Dyson ensembles. e concurrence was used for quantifying entanglement and was also statistically investigated. Similarly, we analyse the squared norm which is also dependent of the transmission eigenvalues and represents the probability of the scatterings result in an entangled state.We de ne the entanglement production factor for determining more precisely the e ciency of the entangler. We used a third-party algorithm to generate the scattering matrices and then we found the transmission eigenvalues for each matrix.We computed the averages of concurrence, squared norm and entanglement production factor and generated some of their distribution curves varying the opacities of the leads. / Os recentes avanços da tecnologia requisitam da ciência um tratamento cada vez mais complexo. Os dispositivos com intensa miniaturização, em especial, já não podem ser estudados utilizando-se somente a física clássica. A abordagem quântica se torna essencial quando os condutores alcançam tamanhos da ordem dos comprimentos característicos dos elétrons que são transportados. Sistemas neste regime apresentam algumas características importantes, como interferência quântica e quantização de algumas grandezas, e são chamados mesoscópicos. O emaranhamento é uma propriedade com grande aplicabilidade tecnológica e que só pode ser explicada através do tratamento quântico. A função de onda de um sistema emaranhado não pode ser decomposta em funções de ondas de cada constituinte. Um sistema mesoscópico que tem sido bastante utilizado como emaranhador de elétrons é o ponto quântico. O tansporte de elétrons em um ponto quântico pode ser caracterizado pela matriz de espalhamento. Os autovalores de transmissão extraídos da matriz de espalhamento fornecem algumas quantidades relacionadas ao transporte de elétrons, inclusive a quantificação do emaranhamento. Nesta dissertação estudamos estatisticamente a produção de emaranhamento em um ponto quântico caótico (PQC) com contatos não ideais. Esses PQCs são modelados por centros de espalhamento conectados a guias de ondas com barreiras de potencial e o transporte de elétrons é descrito por matrizes de espalhamento aleatórias. Consideramos para as cavidades dos PQCs as simetrias de reversão temporal e invariância sob rotação de spin, sendo suasmatrizes de espalhamento pertencentes aos ensembles de Wigner-Dyson. A concorrência foi utilizada para quanti car o emaranhamento e o estudamos estatisticamente. Analisamos damesma forma a norma quadrada, também dependente dos autovalores de transmissão e que representa a probabilidade do sistema retornar um estado final emaranhado. Definimos o fator de produção de emaranhamento para determinar de forma mais precisa a eficiência do emaranhamento no PQC. Utilizamos um algoritmo para gerar as matrizes de espalhamento e obter os autovalores de transmissão de cada matriz. Calculamos as médias da concorrência, da norma quadrada e do fator de produção de emaranhamento e também algumas distribuições dessas quantidades variando-se a opacidade dos guias de onda.
237

Propriedades eletrÃnicas de pontos quÃnticos contendo muitos elÃtrons. / Electronic Properties of Quantum Dots Containing Many Electrons

Heitor Alves de Melo 23 February 2010 (has links)
nÃo hà / Este trabalho dedica-se ao estudo das propriedades eletrÃnicas de pontos quÃnticos semicondutores contendo muitos elÃtrons confinados. Em particular, serÃo investigados semicondutores contendo muitos elÃtrons confinados. Em particular, serÃo investigados pontos quÃnticos de Si e Ge imersos em matrizes dielÃtricas (SiO2 e HfO2). O mÃtodo teÃrico utilizado para calcular a energia total de um sistema de N elÃtrons confinados baseia-se numa versÃo simplificada do mÃtodo de Hartree-Fock. Neste modelo a energia total e calculada a partir das funÃÃes de onda e estados de energia de uma Ãnica partÃcula Os resultados obtidos mostram que a energia total em pontos quÃnticos de Ge sÃo em geral maiores que em pontos quÃnticos de Si, independentemente do nÃmero de elÃtrons confinados. Isto acontece devido a massa efetiva menor dos elÃtrons no Ge que aumentam as energia de confinamento. Em relaÃÃo ao papel das barreiras dielÃtricas, a energia total à sempre maior nos casos em que o ponto quÃntico està envolvido por SiO2. Fisicamente, isto se deve ao fato de que a barreira de confinamento do SiO2 (3.2 eV) à maior que a do HfO2 (1.5 eV). Barreiras mais baixas favorecem o aumento da extensÃo espacial das funÃÃes de onda, reduzindo a repulsÃo coulombiana dos elÃtrons confinados. Calculou se tambÃm o potencial quÃmico dos pontos quÃnticos em funÃÃo do nÃmero de elÃtrons confinados, e a energia adicional necessÃria para aprisionar mais um elÃtron nos pontos quÃnticos. Verificou-se que o potencial quÃmico dos pontos quÃnticos de Ge sÃo sempre maiores que nos de Si, por em o potencial quÃmico para pontos quÃnticos envoltos em HfO2 sÃo sempre maiores que no caso do SiO2. Em relaÃÃo a energia adicional, observa-se que esta quantidade apresenta fortes oscilaÃÃes e que varia entre 0 e 0.4 eV para todos os casos estudados. Se levarmos em conta que o fenÃmeno conhecido como bloqueio de Coulomb acontece quando a energia adicional à muito maior que a energia tÃrmica (da ordem de 3=2kBT), este fenÃmeno sÃo serà observado quando houver poucos elÃtrons confinados nos pontos quÃnticos. / This work investigates the electronic properties of semiconductor quantum dots in which there are many electrons confined. In particular, we study Si and Ge quantum dots embedded in dielectric matrices (SiO2 e HfO2). The theoretical method used to calculate the total energy of N electrons confined in quantum dots is based on a simplified version of the Hartree-Fock method. In this model, the total energy is obtained from single-particle wavefunctions and eigen-energies. The obtained results show that the total energy in Ge quantum dots are always larger than in Si ones. The reason is the smaller electron e effective mass in Ge, which raises the energies of the confined states. As for the role of the dielectric matrix, the total energy is always larger for SiO2 than for HfO2. Physically, this e effect is caused by the fact that SiO2 has larger confinement barriers (3.2 eV) than HfO2(1.5 eV). Smaller barriers favor larger spatial extent of the wavefunctions, decreasing the repulsion energy of the confined electrons. The chemical potential and additional energy was also calculated as function of the number of confined electrons. It was observed that the chemical potential of Ge quantum dots are always larger than Si ones, but the role of the dielectric matrix is inverted. The chemical potential for HfO2 is larger than for SiO2. With respect to the additional energy, we observed that this quantity strongly oscillates within the range 0 to 0.4 eV for cases. If one takes into account that the Coulomb blockade phenomena is only observed for additional energies much larger the thermal energy (of the order of 3/2kBT), this phenomena can only be observed for the case where there are only a few electrons confined in the quantum dots.
238

Analysis of the External Quantum Efficiency of Quantum Dot-enhanced Multijunction Solar Cells

Thériault, Olivier January 2015 (has links)
This thesis focuses on the analysis of the external quantum efficiency of quantum dot-enhanced multi-junction solar cells. Divided in four major parts, it uses the experimental methodology developed in the SUNLAB. At first, a model is introduced to calculate the external quantum efficiency of single and multi-junction solar cells. This model takes into account the semiconductor physics governing the electrical property of the solar cell. It furthermore takes into account the optical transmission and reflection in the semiconductor structure using a transfer matrix method. The calculated curve fits a single junction GaAs solar cell's external quantum efficiency to a high degree of precision. Finally, an InGaP/GaAs/Ge solar cell's external quantum efficiency is calculated and it reproduces accurately the behavior of a measured cell. Second, the reflectivity of a solar cell is studied. An analysis technique involving using the fast Fourier transform of the oscillation in the reflectivity is introduced. This technique extracts the thicknesses of the top and middle subcells. The reflectivity is subsequently calculated using the transfer matrix method and it reproduces the behavior of the measured samples. Third, the effect of the addition of quantum dots in the middle subcell is studied. It is demonstrated that they extend the absorption range of the middle subcell. This is completed by first modeling the quantum mechanical behavior of the electrons and holes in the nanostructure. Their emission and absorption properties are derived. Those derived properties are verified by experimentally measured photoluminescence and electroluminescence of the nanostructures. The resulting model is then compared to experimentally measured external quantum efficiencies of single junction and multi-junction quantum dot-enhanced solar cells. Finally, a study of the bottom subcell artifact is completed. Using the fill-factor bias experiment, each of the contribution of the light coupling and the internal voltage biasing is decoupled. For the measured sample, an optimal voltage of 2.1 V is found to minimize the artifact. At this point, the internal voltage biasing creates an artifact of 1 % and the light coupling artifact is 8 %.
239

Bezkontaktní měření teploty pomocí luminiscenčních materiálů / Noncontact temperature measurements using luminescent materials

Jedlička, Jindřich January 2020 (has links)
This diploma thesis deals with noncontact temperature measurement using luminescent materials. In the theoretical part of the thesis, luminescent materials were selected on the basis of a literature review with respect to sensitivity and operating temperature range. In the experimental part of the thesis, photoluminescence of CdSe/ZnS and GaAs quantum dots for various temperatures was measured and the relative change of luminescence parameters such as emission peak position, intensity, intensity ratio of two emission peaks, and lifetime of luminescence were determined from the measurements in agreement with expectations according to the literature. Achieving high spatial resolution would be made possible by measuring cathodoluminescence, where the luminescence spectra are obtained with an order of magnitude higher spatial resolution. These measurements and the influence of electron beam on the luminescence quality of selected materials will be subject of further experimental study.
240

Initialisation de spin et rotation de polarisation dans une boîte quantique en microcavité / Spin initialisation and polarisation rotation in quantum dot embbeded in microcavity

Demory, Justin 18 January 2016 (has links)
Les photons uniques sont des candidats idéaux pour transporter l’information quantique et l'un des défis majeurs est de pouvoir faire interagir ces photons entre eux via une interface lumière-matière efficace. Dans ce contexte, de nombreux travaux de recherche ont visé à implémenter une interface spin-photon, c’est-à-dire une interface entre les qubits volants (photons) et un qubit stationnaire (spin d’un porteur de charge confiné dans un dispositif à l’état solide). Des possibilités prometteuses ont en particulier été ouvertes suite à la démonstration du phénomène de rotation de polarisation induite par un spin unique. Cette rotation Faraday/Kerr, phénomène magnéto-optique bien connu mais appliqué ici à l’interaction avec un spin unique, permet en principe de transférer l’état quantique d’un spin sur l’état quantique des photons transmis/réfléchis. Néanmoins, ces observations de rotation de polarisation induite par un spin unique étaient restées limitées à des angles de rotation de l’ordre de quelques millidegrés.Pendant cette thèse, j'ai démontré qu’une exaltation géante de l’interaction spin-photon peut être obtenue en exploitant les effets de l’électrodynamique quantique en cavité. Le système étudié est constitué d'une boîte quantique semiconductrice (InAs/GaAs) couplée de façon déterministe à une microcavité optique de type micropilier : cette géométrie de cavité constitue une des interfaces les plus efficaces entre un faisceau incident et un système quantique confiné. De plus, la boîte quantique utilisée ici contient un porteur de charge résident dont le spin peut-être initialisé et mesuré optiquement.Durant cette thèse, j’ai réalisé un montage expérimental permettant d’initialiser l’état de spin confiné à l’intérieur de la boîte quantique et d’analyser la rotation de polarisation induite par ce spin. J'ai pu ainsi démontrer qu'il était possible d'initialiser l'état de spin à l'intérieur de la boîte quantique grâce à un faisceau polarisé circulairement. Ayant un état de spin initialisé, j'ai pu ensuite observer la rotation de polarisation induite par le spin confiné d'environ ± 6 °. Cette rotation macroscopique de la polarisation constitue trois ordres de grandeurs par rapport à l'état de l'art précédent. En parallèle des travaux expérimentaux, j'ai étudié théoriquement le phénomène d'initialisation et de rotation de polarisation dans nos systèmes boîte quantique en microcavité. J'ai pu développer des modèles analytiques permettant d'analyser et de prédire les expériences d'excitation résonante et de rotation de polarisation. Ces travaux théoriques ont notamment permis de déterminer des paramètres réalistes pour laquelle la rotation de polarisation optimale est atteinte permettant d'obtenir une interface spin-photon efficace.Cette nouvelle interface entre photon et mémoire quantique ouvre la voie à un large panel d’expériences pour l’information quantique et la communication quantique longue distance. / Single photons are ideal candidates to carry quantum information and the major challenge that optical quatum computing must face is to engineer photon matter interaction. A promising way to do so is to implement an efficient spin-photon interface making use of the polarization rotation (so-called Faraday or Kerr rotation) induced by a single spin. Thanks to the polarization rotation, it is possible to transfer the spin state into a polarization state. However, observations of Kerr rotation induced by a single spin were reported only recently, with rotation angles in the few 10-3 degree range.Cavity-QED effects are used to demonstrate a giant exaltation of the spin-photon interaction. The device is a single semiconductor quantum dot spin inserted inside a micropillar, a geometry which currently constitutes the most efficient photonic interface between an external laser beam and a confined cavity mode. Further, quantum dots confine a spin state of charge carrier which can be initialized and optically measured.In this thesis, I realized an experimental setup used to initialize a spin state confined in the quantum dot and to analyze the polarization rotation induced by this spin state. I demonstrated that it was possible to initialize the spin state confined in quantum dot with a circularly polarized beam. Having a well-known spin state, I observed the polarization rotation of ± 6 ° induced by a single spin. This macroscopic polarization rotation is three orders of magnitude three orders of magnitude higher than the previous state of artIn parallel of this experimental work, I studied theoretically spin initialization and polarization rotation phenomenon in our systems. I developed analytical models to characterize and predict the resonant excitation and polarization rotation experiences. Thanks to this theoretical work, I determined realistic parameters for the device to realize an optimal spin-photon interface.This novel way of interfacing a flying qubit and a solid-state quantum memory opens the road for a wide range of applications for quantum information processing and long-distance quantum communication.

Page generated in 0.0807 seconds