• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Harnack's inequality in spaces of homogeneous type

Silwal, Sharad Deep January 1900 (has links)
Doctor of Philosophy / Department of Mathematics / Diego Maldonado / Originally introduced in 1961 by Carl Gustav Axel Harnack [36] in the context of harmonic functions in R[superscript]2, the so-called Harnack inequality has since been established for solutions to a wide variety of different partial differential equations (PDEs) by mathematicians at different times of its historical development. Among them, Moser's iterative scheme [47-49] and Krylov-Safonov's probabilistic method [43, 44] stand out as pioneering theories, both in terms of their originality and their impact on the study of regularity of solutions to PDEs. Caffarelli's work [12] in 1989 greatly simplified Krylov-Safonov's theory and established Harnack's inequality in the context of fully non-linear elliptic PDEs. In this scenario, Caffarelli and Gutierrez's study of the linearized Monge-Ampere equation [15, 16] in 2002-2003 served as a motivation for axiomatizations of Krylov-Safonov-Caffarelli theory [3, 25, 57]. The main work in this dissertation is a new axiomatization of Krylov-Safonov-Caffarelli theory. Our axiomatic approach to Harnack's inequality in spaces of homogeneous type has some distinctive features. It sheds more light onto the role of the so-called critical density property, a property which is at the heart of the techniques developed by Krylov and Safonov. Our structural assumptions become more natural, and thus, our theory better suited, in the context of variational PDEs. We base our method on the theory of Muckenhoupt's A[subscript]p weights. The dissertation also gives an application of our axiomatic approach to Harnack's inequality in the context of infinite graphs. We provide an alternate proof of Harnack's inequality for harmonic functions on graphs originally proved in [21].
2

Semi-lipschitz functions, best approximation, and fuzzy quasi-metric hyperspaces

Sánchez Álvarez, José Manuel 25 June 2009 (has links)
En los últimos años se ha desarrollado una teoría matemática que permite generalizar algunas teorías matemáticas clásicas: hiperespacios, espacios de funciones, topología algebraica, etc. Este hecho viene motivado, en parte, por ciertos problemas de análisis funcional, concentración de medidas, sistemas dinámicos, teoría de las ciencias de la computación, matemática económica, etc. Esta tesis doctoral está dedicada al estudio de algunas de estas generalizaciones desde un punto de vista no simétrico. En la primera parte, estudiamos el conjunto de funciones semi-Lipschitz; mostramos que este conjunto admite una estructura de cono normado. Estudiaremos diversos tipos de completitud (bicompletitud, right k-completitud, D-completitud, etc), y también analizaremos cuando la casi-distancia correspondiente es balanceada. Además presentamos un modelo adecuado para el computo de la complejidad de ciertos algoritmos mediante el uso de normas relativas. Esto se consigue seleccionando un espacio de funciones semi-Lipschitz apropiado. Por otra parte, mostraremos que estos espacios proporcionan un contexto adecuado en el que caracterizar los puntos de mejor aproximación en espacios casi-métricos. El hecho de que varias hipertopologías hayan sido aplicadas con éxito en diversas áreas de Ciencias de la Computación ha contribuido a un considerable aumento del interés en el estudio de los hiperespacios desde un punto de vista no simétrico. Así, en la segunda parte de la tesis, estudiamos algunas condiciones de mejor aproximación en el contexto de hiperespacios casi-métricos. Por otro lado, caracterizamos la completitud de un espacio uniforme usando la completitud de Sieber-Pervin, la de Smyth y la D-completitud de su casi-uniformidad superior de Hausdorff-Bourbaki, definida en los subconjuntos compactos no vacíos. Finalmente, introducimos dos nociones de hiperespacio casi-métrico fuzzy. / Sánchez Álvarez, JM. (2009). Semi-lipschitz functions, best approximation, and fuzzy quasi-metric hyperspaces [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/5769
3

Topological and Computational Models for Fuzzy Metric Spaces via Domain Theory

RICARTE MORENO, LUIS-ALBERTO 23 December 2013 (has links)
This doctoral thesis is devoted to investigate the problem of establishing connections between Domain Theory and the theory of fuzzy metric spaces, in the sense of Kramosil and Michalek, by means of the notion of a formal ball, and then constructing topological and computational models for (complete) fuzzy metric spaces. The antecedents of this research are mainly the well-known articles of A. Edalat and R. Heckmann [A computational model for metric spaces, Theoret- ical Computer Science 193 (1998), 53-73], and R. Heckmann [Approximation of metric spaces by partial metric spaces, Applied Categorical Structures 7 (1999), 71-83], where the authors obtained nice and direct links between Do- main Theory and the theory of metric spaces - two crucial tools in the study of denotational semantics - by using formal balls. Since every metric induces a fuzzy metric (the so-called standard fuzzy metric), the problem of extending Edalat and Heckmann's works to the fuzzy framework arises in a natural way. In our study we essentially propose two di erent approaches. For the rst one, valid for those fuzzy metric spaces whose continuous t-norm is the minimum, we introduce a new notion of fuzzy metric completeness (the so-called standard completeness) that allows us to construct a (topological) model that includes the classical theory as a special case. The second one, valid for those fuzzy metric spaces whose continuous t-norm is greater or equal than the Lukasiewicz t-norm, allows us to construct, among other satisfactory results, a fuzzy quasi-metric on the continuous domain of formal balls whose restriction to the set of maximal elements is isometric to the given fuzzy metric. Thus we obtain a computational model for complete fuzzy metric spaces. We also prove some new xed point theorems in complete fuzzy metric spaces with versions to the intuitionistic case and the ordered case, respec- tively. Finally, we discuss the problem of extending the obtained results to the asymmetric framework. / Ricarte Moreno, L. (2013). Topological and Computational Models for Fuzzy Metric Spaces via Domain Theory [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34670
4

Domínios intervalares da matemática computacional

Dimuro, Gracaliz Pereira January 1991 (has links)
Fundamentada a importância da utilização da Teoria dos Intervalos em computação científica, é realizada uma revisão da Teoria Clássica dos Intervalos, com críticas sobre as incompatibilidades encontradas como motivos de diversas dificuldades para desenvolvimento da própria teoria e, consequentemente, das Técnicas Intervalares. É desenvolvida uma nova abordagem para a Teoria dos Intervalos de acordo com a Teoria dos Domínios e a proposta de [ACI 89], obtendo-se os Domínios Intervalares da Matemática Computacional. Introduz-se uma topologia (Topologia de Scott) compatível com a idéia de aproximação, gerando uma ordem de informação, isto é, para quaisquer intervalos x e y, diz-se que se x -c y , então y fornece mais (no mínimo tanto quanto) informação, sobre um real r, do que x. Prova-se que esta ordem de informação induz uma topologia To (topologia de Scott) , que é mais adequada para uma teoria computacional que a topologia da Hausdorff introduzida por Moore [MOO 66]. Cada número real r é aproximado por intervalos de extremos racionais, os intervalos de informação, que constituem o espaço de informação II(Q), superando assim a regressão infinita da abordagem clássica. Pode-se dizer que todo real r é o supremo de uma cadeia de intervalos com extremos racionais “encaixados”. Assim, os reais são os elementos totais de um domínio contínuo, chamado de Domínio dos Intervalos Reais Parciais, cuja base é o espaço de informação II (Q). Cada função contínua da Análise Real é o limite de sequências de funções contínuas entre elementos da base do domínio. Toda função contínua nestes domínios constitui uma função monotônica na base e é completamente representada em termos finitos. É introduzida uma quasi-métrica que induz uma topologia compatível com esta abordagem e provê as propriedades quantitativas, além de possibilitar a utilização da noção de sequências, limites etc, sem que se precise recorrer a conceitos mais complexos. Desenvolvem-se uma aritmética, critérios de aproximação e os conceito de intervalo ponto médio, intervalo valor absoluto e intervalo diâmetro, conceitos compatíveis com esta abordagem. São acrescentadas as operações de união, interseção e as unárias. Apresenta-se um amplo estudo sobre a função intervalar e a inclusão de imagens de funções, com ênfase na obtenção de uma extensão intervalar natural contínua. Esta é uma abordagem de lógica construtiva e computacional. / The importance of Interval Theory for scientific computation is emphasized. A review of the Classical Theory is macle, including a discussion about some incompatibities that cause problems in developing interval algorithms. A new approach to the Interval Theory is developed in the light of the Theory of Domains and according to the ideas by Acióly [ACI 89], getting the Interval Domains of Computational Mathematics. It is introduced a topology (Scott Topology), which is associated with the idea of approximation, generating an information order, that is, for any intervals x and y one says that if x -c y, then "the information given by y is better or at least equal than the one given by x". One proves that this information order induces a To topology (Scott's topology) which is more suitable for a computation theory than that of Hausdorff introduced by Moore [MOO 66]. This approach has the advantage of being both of constructive logic and computational. Each real number is approximated by intervals with rational bounds, named information intervals of the Information Space II(Q), eliminating the infinite regression found in the classical approach. One can say that every real a is the supreme of a chain of rational intervals. Then, the real numbers are the total elements of a continuous domain, named the Domain of the Partial Real Intervals, whose basis is the information space II (Q). Each continuous function in the Real Analysis is the limit of sequences of continuous functions among any elements which belong to the base of the domain. In these same domains, each continuous function is monotonic on the base and it is completely represented by finite terms. It is introduced a quasi-metric that leads to a compatible topology and supplies the quantitative properties. An arithmetic, some approximation criteria, the concepts of mean point interval, absolute value interval and width interval are developed and set operations are added. The ideas of interval functions and the inclusion of ranges of functions are also presented, and a continuous natural interval extension is obtained.
5

Variants of P-frames and associated rings

Nsayi, Jissy Nsonde 12 1900 (has links)
We study variants of P-frames and associated rings, which can be viewed as natural generalizations of the classical variants of P-spaces and associated rings. To be more precise, we de ne quasi m-rings to be those rings in which every prime d-ideal is either maximal or minimal. For a completely regular frame L, if the ring RL of real-valued continuous functions of L is a quasi m-ring, we say L is a quasi cozero complemented frame. These frames are less restricted than the cozero complemented frames. Using these frames we study some properties of what are called quasi m-spaces, and observe that the property of being a quasi m-space is inherited by cozero subspaces, dense z- embedded subspaces, and regular-closed subspaces among normal quasi m-space. M. Henriksen, J. Mart nez and R. G. Woods have de ned a Tychono space X to be a quasi P-space in case every prime z-ideal of C(X) is either minimal or maximal. We call a point I of L a quasi P-point if every prime z-ideal of RL contained in the maximal ideal associated with I is either maximal or minimal. If all points of L are quasi P-points, we say L is a quasi P-frame. This is a conservative de nition in the sense that X is a quasi P-space if and only if the frame OX is a quasi P-frame. We characterize these frames in terms of cozero elements, and, among cozero complemented frames, give a su cient condition for a frame to be a quasi P-frame. A Tychono space X is called a weak almost P-space if for every two zero-sets E and F of X with IntE IntF, there is a nowhere dense zero-set H of X such that E F [H. We present the pointfree version of weakly almost P-spaces. We de ne weakly regular rings by a condition characterizing the rings C(X) for weak almost P-spaces X. We show that a reduced f-ring is weakly regular if and only if every prime z-ideal in it which contains only zero-divisors is a d-ideal. We characterize the frames L for which the ring RL of real-valued continuous functions on L is weakly regular. We introduce the notions of boundary frames and boundary rings, and use them to give another ring-theoretic characterization of boundary spaces. We show that X is a boundary space if and only if C(X) is a boundary ring. A Tychono space whose Stone- Cech compacti cation is a nite union of closed subspaces each of which is an F-space is said to be nitely an F-space. Among normal spaces, S. Larson gave a characterization of these spaces in terms of properties of function rings C(X). By extending this notion to frames, we show that the normality restriction can actually be dropped, even in spaces, and thus we sharpen Larson's result. / Mathematics / D. Phil. (Mathematics)
6

Domínios intervalares da matemática computacional

Dimuro, Gracaliz Pereira January 1991 (has links)
Fundamentada a importância da utilização da Teoria dos Intervalos em computação científica, é realizada uma revisão da Teoria Clássica dos Intervalos, com críticas sobre as incompatibilidades encontradas como motivos de diversas dificuldades para desenvolvimento da própria teoria e, consequentemente, das Técnicas Intervalares. É desenvolvida uma nova abordagem para a Teoria dos Intervalos de acordo com a Teoria dos Domínios e a proposta de [ACI 89], obtendo-se os Domínios Intervalares da Matemática Computacional. Introduz-se uma topologia (Topologia de Scott) compatível com a idéia de aproximação, gerando uma ordem de informação, isto é, para quaisquer intervalos x e y, diz-se que se x -c y , então y fornece mais (no mínimo tanto quanto) informação, sobre um real r, do que x. Prova-se que esta ordem de informação induz uma topologia To (topologia de Scott) , que é mais adequada para uma teoria computacional que a topologia da Hausdorff introduzida por Moore [MOO 66]. Cada número real r é aproximado por intervalos de extremos racionais, os intervalos de informação, que constituem o espaço de informação II(Q), superando assim a regressão infinita da abordagem clássica. Pode-se dizer que todo real r é o supremo de uma cadeia de intervalos com extremos racionais “encaixados”. Assim, os reais são os elementos totais de um domínio contínuo, chamado de Domínio dos Intervalos Reais Parciais, cuja base é o espaço de informação II (Q). Cada função contínua da Análise Real é o limite de sequências de funções contínuas entre elementos da base do domínio. Toda função contínua nestes domínios constitui uma função monotônica na base e é completamente representada em termos finitos. É introduzida uma quasi-métrica que induz uma topologia compatível com esta abordagem e provê as propriedades quantitativas, além de possibilitar a utilização da noção de sequências, limites etc, sem que se precise recorrer a conceitos mais complexos. Desenvolvem-se uma aritmética, critérios de aproximação e os conceito de intervalo ponto médio, intervalo valor absoluto e intervalo diâmetro, conceitos compatíveis com esta abordagem. São acrescentadas as operações de união, interseção e as unárias. Apresenta-se um amplo estudo sobre a função intervalar e a inclusão de imagens de funções, com ênfase na obtenção de uma extensão intervalar natural contínua. Esta é uma abordagem de lógica construtiva e computacional. / The importance of Interval Theory for scientific computation is emphasized. A review of the Classical Theory is macle, including a discussion about some incompatibities that cause problems in developing interval algorithms. A new approach to the Interval Theory is developed in the light of the Theory of Domains and according to the ideas by Acióly [ACI 89], getting the Interval Domains of Computational Mathematics. It is introduced a topology (Scott Topology), which is associated with the idea of approximation, generating an information order, that is, for any intervals x and y one says that if x -c y, then "the information given by y is better or at least equal than the one given by x". One proves that this information order induces a To topology (Scott's topology) which is more suitable for a computation theory than that of Hausdorff introduced by Moore [MOO 66]. This approach has the advantage of being both of constructive logic and computational. Each real number is approximated by intervals with rational bounds, named information intervals of the Information Space II(Q), eliminating the infinite regression found in the classical approach. One can say that every real a is the supreme of a chain of rational intervals. Then, the real numbers are the total elements of a continuous domain, named the Domain of the Partial Real Intervals, whose basis is the information space II (Q). Each continuous function in the Real Analysis is the limit of sequences of continuous functions among any elements which belong to the base of the domain. In these same domains, each continuous function is monotonic on the base and it is completely represented by finite terms. It is introduced a quasi-metric that leads to a compatible topology and supplies the quantitative properties. An arithmetic, some approximation criteria, the concepts of mean point interval, absolute value interval and width interval are developed and set operations are added. The ideas of interval functions and the inclusion of ranges of functions are also presented, and a continuous natural interval extension is obtained.
7

Domínios intervalares da matemática computacional

Dimuro, Gracaliz Pereira January 1991 (has links)
Fundamentada a importância da utilização da Teoria dos Intervalos em computação científica, é realizada uma revisão da Teoria Clássica dos Intervalos, com críticas sobre as incompatibilidades encontradas como motivos de diversas dificuldades para desenvolvimento da própria teoria e, consequentemente, das Técnicas Intervalares. É desenvolvida uma nova abordagem para a Teoria dos Intervalos de acordo com a Teoria dos Domínios e a proposta de [ACI 89], obtendo-se os Domínios Intervalares da Matemática Computacional. Introduz-se uma topologia (Topologia de Scott) compatível com a idéia de aproximação, gerando uma ordem de informação, isto é, para quaisquer intervalos x e y, diz-se que se x -c y , então y fornece mais (no mínimo tanto quanto) informação, sobre um real r, do que x. Prova-se que esta ordem de informação induz uma topologia To (topologia de Scott) , que é mais adequada para uma teoria computacional que a topologia da Hausdorff introduzida por Moore [MOO 66]. Cada número real r é aproximado por intervalos de extremos racionais, os intervalos de informação, que constituem o espaço de informação II(Q), superando assim a regressão infinita da abordagem clássica. Pode-se dizer que todo real r é o supremo de uma cadeia de intervalos com extremos racionais “encaixados”. Assim, os reais são os elementos totais de um domínio contínuo, chamado de Domínio dos Intervalos Reais Parciais, cuja base é o espaço de informação II (Q). Cada função contínua da Análise Real é o limite de sequências de funções contínuas entre elementos da base do domínio. Toda função contínua nestes domínios constitui uma função monotônica na base e é completamente representada em termos finitos. É introduzida uma quasi-métrica que induz uma topologia compatível com esta abordagem e provê as propriedades quantitativas, além de possibilitar a utilização da noção de sequências, limites etc, sem que se precise recorrer a conceitos mais complexos. Desenvolvem-se uma aritmética, critérios de aproximação e os conceito de intervalo ponto médio, intervalo valor absoluto e intervalo diâmetro, conceitos compatíveis com esta abordagem. São acrescentadas as operações de união, interseção e as unárias. Apresenta-se um amplo estudo sobre a função intervalar e a inclusão de imagens de funções, com ênfase na obtenção de uma extensão intervalar natural contínua. Esta é uma abordagem de lógica construtiva e computacional. / The importance of Interval Theory for scientific computation is emphasized. A review of the Classical Theory is macle, including a discussion about some incompatibities that cause problems in developing interval algorithms. A new approach to the Interval Theory is developed in the light of the Theory of Domains and according to the ideas by Acióly [ACI 89], getting the Interval Domains of Computational Mathematics. It is introduced a topology (Scott Topology), which is associated with the idea of approximation, generating an information order, that is, for any intervals x and y one says that if x -c y, then "the information given by y is better or at least equal than the one given by x". One proves that this information order induces a To topology (Scott's topology) which is more suitable for a computation theory than that of Hausdorff introduced by Moore [MOO 66]. This approach has the advantage of being both of constructive logic and computational. Each real number is approximated by intervals with rational bounds, named information intervals of the Information Space II(Q), eliminating the infinite regression found in the classical approach. One can say that every real a is the supreme of a chain of rational intervals. Then, the real numbers are the total elements of a continuous domain, named the Domain of the Partial Real Intervals, whose basis is the information space II (Q). Each continuous function in the Real Analysis is the limit of sequences of continuous functions among any elements which belong to the base of the domain. In these same domains, each continuous function is monotonic on the base and it is completely represented by finite terms. It is introduced a quasi-metric that leads to a compatible topology and supplies the quantitative properties. An arithmetic, some approximation criteria, the concepts of mean point interval, absolute value interval and width interval are developed and set operations are added. The ideas of interval functions and the inclusion of ranges of functions are also presented, and a continuous natural interval extension is obtained.
8

Кардинальные инварианты ежей Зоргенфрея : магистерская диссертация / Cardinal invariants of Sorgenfrei hedgehogs

Ляховец, Д. Ю., Lyakhovets, D. Y. January 2017 (has links)
Рассматриваются два топологических пространства: квази-метрический ёж и фактор-ёж, у которых находятся следующие кардинальные инварианты: вес, характер, плотность, спред, экстент, клеточность, теснота, число открытых множеств и число Линделефа; наследственные кардинальные инварианты: наследственный вес, наследственный характер, наследственная плотность, наследственный спред, наследственный экстент, наследственная клеточность, наследственная теснота и наследственное число Линделефа. / We consider two topological spaces, the quasi-metric hedgehog and the factor-hedgehog, which have the following cardinal invariants: weight, character, density, spread, extent, cellularity, tightness, the number of open sets, and the Lindelöf number; hereditary cardinal invariants: hereditary weight, hereditary character, hereditary density, hereditary spread, hereditary extent, hereditary cellularity, hereditary tightness, and the hereditary Lindelöf number.
9

On completeness of partial metric spaces, symmetric spaces and some fixed point results

10 1900 (has links)
The purpose of the thesis is to study completeness of abstract spaces. In particular, we study completeness in partial metric spaces, partial metric type spaces, dislocated metric spaces, dislocated metric type spaces and symmetric spaces that are generalizations of metric spaces. It is well known that complete metric spaces have a wide range of applications. For instance, the classical Banach contraction principle is phrased in the context of complete metric spaces. Analogously, the Banach's xed point theorem and xed point results for Lipschitzian maps are discussed in this context, namely in, partial metric spaces and metric type spaces. Finally, xed point results are presented for symmetric spaces / Mathematical Sciences / Ph. D. (Mathematics)
10

On completeness of partial metric spaces, symmetric spaces and some fixed point results

Aphane, Maggie 12 1900 (has links)
The purpose of the thesis is to study completeness of abstract spaces. In particular, we study completeness in partial metric spaces, partial metric type spaces, dislocated metric spaces, dislocated metric type spaces and symmetric spaces that are generalizations of metric spaces. It is well known that complete metric spaces have a wide range of applications. For instance, the classical Banach contraction principle is phrased in the context of complete metric spaces. Analogously, the Banach's xed point theorem and xed point results for Lipschitzian maps are discussed in this context, namely in, partial metric spaces and metric type spaces. Finally, xed point results are presented for symmetric spaces. / Geography / Ph. D. (Mathematics)

Page generated in 0.0329 seconds