• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 12
  • 7
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 100
  • 63
  • 30
  • 18
  • 18
  • 17
  • 15
  • 14
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Robust, reusable qubits for quantum information applications

Gibbons, Michael J. 21 January 2011 (has links)
Most neutral atom quantum computing experiments rely on destructive state detection techniques that eject the detected qubits from the trap. These techniques limit the repetition rate of these experiments due to the necessity of reloading a new quantum register for each operation. We address this problem by developing reusable neutral atom qubits. Individual Rubidium 87 atoms are trapped in an optical lattice and are held for upwards of 300 s. Each atom is prepared in an initial quantum state and then the state is subsequently detected with 95% fidelity with less than a 1% probability of losing it from the trap. This combination of long storage times and nondestructive state detection will facilitate the development of faster and more complex quantum systems that will enable future advancements in the field of quantum information.
42

Quantum Information Science with Neutral Atoms

Rakreungdet, Worawarong January 2008 (has links)
We study a system of neutral atoms trapped in a three-dimensional optical lattice suitable for the encoding, initialization and manipulation of atomic qubits. The qubits are manipulated by applied electromagnetic fields interacting with dipole moments of the atoms via light shifts, Raman transitions, Zeeman shifts, and microwave transitions. Our lattice is formed by three orthogonal one-dimensional lattices, which have different frequencies so that interference terms average to zero. This geometry allows considerable freedom in designing the component one-dimensional lattices, so that they provide not only confinement but also independent control in each dimension. Our atomic qubits are initialized from a laser-cooled atomic sample by Raman sideband cooling in individual lattice potential wells. We have demonstrated accurate and robust one-qubit manipulation using resonant microwave fields. In practice such control operations are always subject to errors, in our case spatial inhomogeneities in the microwave Rabi frequency and the light shifted qubit transition frequency. Observation of qubit dynamics in near real time allows us to minimize these inhomogeneities, and therefore optimize qubit logic gates. For qubits in the lattice, we infer a fidelity of 0.990(3) for a single pi-pulse. We have also explored the use of NMR-type pulse techniques in order to further reduce the effect of errors and thus improve gate robustness in the atom/lattice system. Our schemes for two-qubit quantum logic operations are based on controlled collisional interactions. We have experimented with two schemes in order to probe these collisions. The first involves manipulation of the center-of-mass wavepackets of two qubits in a geometry corresponding to two partially overlapping Mach-Zender interferometers. Unfortunately, this scheme has proven extremely sensitive to phase errors, as the wavepackets are moved by the optical lattice. The other scheme starts with two qubits in spatially separated traps, and utilizes microwaves to drive one or both qubits into a third trap in-between the two qubits. Once the wavepackets overlap, the collisions create a large energy shift which can be probed spectroscopically.
43

Measuring quantum systems with a tunnel junction

Wabnig, Joachim January 2006 (has links)
This thesis is concerned with employing the statistics of charge transfer in a conductor as a tool for quantum measurement. The physical systems studied are electronic devices made by nanoscale manufacturing techniques. In this context quantum measurement appears not as a postulate, but as physical process. In this thesis I am considering a quantum system, in particular a qubit or a nanomechanical resonator, interacting with a tunnel junction. The effect of coupling a quantum system to a tunnel junction is twofold: The state of the quantum system will be changed and there will be information about the quantum system in the statistics of charge transfer of the tunnel junction. As the first example a quantum measurement process of a qubit is considered. A common description of the system and charge dynamics is found by introducing a new quantity, the charge specific density matrix. By deriving and solving a Markovian master equation for this quantity the measurement process is analyzed. The measurement is shown to be a dynamical process, where correlations between the initial state of the qubit and the number of charges transferred in the tunnel junction arise on a typical timescale, the measurement time. As another example of a quantum system a nanomechanical oscillator is considered. It is found, that the biased tunnel junction, acting as a non-equilibrium environment to the oscillator, increases the temperature of the oscillator from its thermal equilibrium value. The current in the junction is modulated by the interaction with the oscillator, but the influence vanishes for bias voltages smaller than the oscillator frequency. For an asymmetric junction and non-vanishing oscillator momentum a current is shown to flow through the junction even at zero bias. The current noise spectrum induced by the oscillator in the tunnel junction consists of a noise floor and a peaked structure with peaks at zero frequency, the oscillator frequency and double the oscillator frequency. The peak heights are dependent on the coupling strength between oscillator and junction, the occupation number of the oscillator, the bias voltage and the junction temperature. I show how the peak height can be used as a measure of the oscillator temperature, demonstrating that the noise of a tunnel junction can be used for electronic thermometry of a nanomechanical oscillator.
44

Dynamique quantique dans un dcSQUID : du qubit de phase à l'oscillateur quantique bidimensionnel

Lecocq, Florent 11 May 2011 (has links) (PDF)
Cette thèse porte sur la dynamique quantique dans un dcSQUID inductif. Ce dispositif est une boucle supraconductrice interrompue par deux jonctions Josephson. Sa dynamique est analogue à celle d'une particule massive évoluant dans un potentiel bidimensionnel. Dans la limite quantique, le dcSQUID se comporte comme un atome artificiel à deux degrés de liberté, contrôlé par le courant et le flux de polarisation. Dans la limite où l'inductance de la boucle est petite devant celle des jonctions, celles-ci sont fortement couplées. La dynamique du circuit est alors celle d'un oscillateur anharmonique quantique unidimensionnel. Dans la limite des deux premiers niveaux d'énergie, ce circuit est un qubit de phase. Jusqu'alors la décohérence dans ce circuit était dominée par le bruit en courant. Nous montrons, par des mesures de spectroscopie et d'oscillations cohérentes, que l'effet du bruit en courant s'annule à courant de polarisation nul, permettant une augmentation des temps de cohérence. Dans la limite où l'inductance de la boucle est grande devant celle des jonctions, la dynamique devient bidimensionnelle. Le circuit exhibe alors un spectre d'énergie riche qui peut être décrit comme celui de deux oscillateurs anharmoniques couplés, correspondant aux modes d'oscillations symétrique et antisymétrique des phases des deux jonctions. Nous mettons en évidence ce spectre par des mesures de spectroscopie et nous démontrons la manipulation cohérente des états quantiques de chaque mode. En particulier nous mettons en évidence un couplage non-linéaire entre les deux modes, dans une limite de couplage fort. Ce couplage nous permet alors d'observer des oscillations cohérentes entre les deux modes internes de cet atome artificiel. De plus, dans ce manuscrit, nous présentons une technique innovante de fabrication de jonctions métalliques par évaporations sous angles qui n'a pas recours à un pont de résine suspendu. Finalement nous proposons un modèle simple basé sur les effets de chauffage qui explique pour la première fois une anomalie récurrente observée dans les caractéristiques courant-tension des dcSQUID.
45

Reducing the electric field sensitivity of a Rydberg state transition by the application of a non-resonant microwave field

Jones, Lucas Alexander 21 August 2012 (has links)
The 87Rb 49s->48s Rydberg state transition was rendered insensitive to electric field fluctuations about a 1V/cm dc electric field. This was accomplished by applying a non-resonant 38.445GHz microwave field to modify the electric dipole moment difference between the two states involved. This effect can be used to preserve the coherence of Rydberg state qubits in the presence of varying electric fields.
46

Reducing the electric field sensitivity of a Rydberg state transition by the application of a non-resonant microwave field

Jones, Lucas Alexander 21 August 2012 (has links)
The 87Rb 49s->48s Rydberg state transition was rendered insensitive to electric field fluctuations about a 1V/cm dc electric field. This was accomplished by applying a non-resonant 38.445GHz microwave field to modify the electric dipole moment difference between the two states involved. This effect can be used to preserve the coherence of Rydberg state qubits in the presence of varying electric fields.
47

EFFECT OF ANCILLA LOSSES ON FAULT-TOLERANT QUANTUM ERROR CORRECTION IN THE [[7,1,3]] STEANE CODE

Nawaf, Sameer Obaid 01 December 2013 (has links)
Fault tolerant quantum error correction is a procedure which satisfies the feature that if one of the gates in the procedure has failed then the failure causes at most one error in the output qubits of the encoded block. Quantum computer is based on the idea of two quantum state systems (Qubits). However, the majority of systems are constructed from higher than two- level subspace. Bad control and environmental interactions in these systems lead to leakage fault. Leakage errors are errors that couple the states inside a code subspace to the states outside a code subspace. One example for leakage fault is loss errors. Since the fault tolerant procedure may be unable to recognize the leakage fault because it was designed to deal with Pauli errors. In that case a single leakage fault might disrupt the fault tolerant technique. In this thesis we investigate the effect of ancilla losses on fault-tolerant quantum error correction in the [[7,1,3]] Steane code. We proved that both Shor and Steane methods are still fault tolerant if loss errors occur.
48

An Insight on Nonlocal Correlations in Two-Qubit Systems

Dilley, Daniel Jacob 01 December 2016 (has links)
In this paper, we introduce the motivation for Bell inequalities and give some background on two different types: CHSH and Mermin's inequalities. We present a proof for each and then show that certain quantum states can violate both of these inequalities. We introduce a new result stating that for four given measurement directions of spin, two respectively from Alice and two from Bob, which are able to produce a violation of the Bell inequality for an arbitrary shared quantum state will also violate the Bell inequality for a maximally entangled state. Then we provide another new result that characterizes all of the two-qubit states that violate Mermin's inequality.
49

Estados emaranhados quânticos tri-partidos com um qubit / Tripartide entangled states with one qubit

Marcio Fernando Cornelio 27 May 2008 (has links)
Estudamos o emaranhamento quântico de estados puros emaranhados tri-partidos quando uma das partes é um qubit. Apresentamos um método para encontrar as decomposições do estado tri-partido mais simples do que sucessivas decomposições de Schmidt. Esse método permite encontrar uma grande quantidade de diferentes famílias de estados emaranhados tri-partidos. Essas famílias são classificadas de acordo com dimensão dos blocos de Jordan de uma matriz obtida do estado emaranhado. Além disso, também demonstramos que estados pertencentes a famílias distintas não podem ser convertidos um no outro por operações locais estocásticas com comunicação clássica (SLOCC). No caso de dois estados pertencentes à mesma família, obtemos condições necessárias e su cientes para sabermos se estes podem ser convertidos um no outro por SLOCC. No caso de serão, também podemos obter a operação do tipo SLOCC que realiza a conversão. / We study the quantum entanglement of tripartite pure states when one of the parties is a qubit. We present a method to find the decompositions of tripartite entangled states which are simpler than two successive Schmidt decompositions. We will find many distinct families of entangled states with distinct decompositions. These families are classified according to the dimensions of the Jordan blocks of a matrix obtained from the entangled state. Furthermore, we show that states belonging to distinct families can not be converted into each other by stochastic local operations and classical communication (SLOCC). In case of two states belonging to the same family, we nd necessary and su?cient conditions to convert one state to the other. We can also find the SLOCC which realizes this conversion.
50

Soluções exatas e medidas de emaranhamento em sistemas de spins / Exact Solutions and Entanglement Measures in Spin Systems

Marcelo Meireles dos Santos 01 February 2018 (has links)
Recentemente, uma implementação de um conjunto universal de portas lógicas de um e dois qubits para computação quântica usando estados de spin de pontos quânticos de um único elétron foi proposta. Estes resultados nos motivaram a desenvolver um estudo teórico formal do correspondente modelo de dois spins colocados em um campo magnético externo e acoplados por uma interação mútua de Heisenberg dependente do tempo. Nós então consideramos a assim chamada equação de dois spins, a qual descreve sistemas quânticos de quatro níveis de energia. Uma útil propriedade dessa equação é que o correspondente problema para o caso de campos magnéticos externos paralelos pode ser reduzido ao problema de um único spin em um campo externo efetivo. Isso nos permite gerar uma série de soluções exatas para a equação de dois spins a partir de soluções exatas já conhecidas da equação de um spin. Com base neste fato, nós construímos e apresentamos neste estudo uma lista de novas soluções exatas para a equação de dois spins para diferentes configurações de campos externos e de interação entre as partículas. Utilizando algumas destas soluções obtidas, estudamos a dinâmica da entropia de emaranhamento dos respectivos sistemas considerando diferentes estados de spins inicialmente separáveis. / Recently, an implementation of a universal set of one- and two-qubit logic gates for quantum computing using spin states of single-electron quantum dots was proposed. These results motivated us to develop a formal theoretical study of the corresponding model of two spins placed in an external magnetic field and coupled by a time-dependent mutual interaction of Heisenberg. We then consider the so-called two-spin equation, which describes four-level quantum systems. A useful property of this equation is that the corresponding problem for the case of parallel external magnetic fields can be reduced to the problem of a single spin in an effective external field. This allows us to generate a series of exact solutions for the two-spin equation from the already known exact solutions of the one-spin equation. Based on this fact, we construct and present in this study a list of new exact solutions for the two-spin equation for different configurations of external fields and interaction between particles. Using some of these solutions obtained, we study the dynamics of the entropy of entanglement of the respective systems considering different initially separable spins states.

Page generated in 0.0281 seconds