• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 12
  • 7
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 100
  • 63
  • 30
  • 18
  • 18
  • 17
  • 15
  • 14
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Non-local electrodynamics of superconducting wires: implications for flux noise and inductance

Senarath Yapa Arachchige, Pramodh Viduranga 22 December 2017 (has links)
The simplest model for superconductor electrodynamics are the London equations, which treats the impact of electromagnetic fields on the current density as a localized phenomenon. However, the charge carriers of superconductivity are quantum mechanical objects, and their wavefunctions are delocalized within the superconductor, leading to non-local effects. The Pippard equation is the generalization of London electrodynamics which incorporates this intrinsic non-locality through the introduction of a new superconducting characteristic length, \xi_0, called the Pippard coherence length. When building nano-scale superconducting devices, the inclusion of the coherence length into electrodynamics calculations becomes paramount. In this thesis, we provide numerical calculations of various electrodynamic quantities of interest in the non-local regime, and discuss their implications for building superconducting devices. We place special emphasis on Superconducting QUantum Inteference Devices (SQUIDs), and their usage as flux quantum bits (qubits) in quantum computation. One of the main limitations of these flux qubits is the presence of intrinsic flux noise, which leads to decoherence of the qubits. Although the origin of this flux noise is not known, there is evidence that it is related to spin impurities within the superconducting material. We present calculations which show that the flux noise in the non-local regime is signi cantly different from the local case. We also demonstrate that non-local electrodynamics greatly affect the self-inductance of the qubit. / Graduate
52

Soluções exatas e medidas de emaranhamento em sistemas de spins / Exact Solutions and Entanglement Measures in Spin Systems

Santos, Marcelo Meireles dos 01 February 2018 (has links)
Recentemente, uma implementação de um conjunto universal de portas lógicas de um e dois qubits para computação quântica usando estados de spin de pontos quânticos de um único elétron foi proposta. Estes resultados nos motivaram a desenvolver um estudo teórico formal do correspondente modelo de dois spins colocados em um campo magnético externo e acoplados por uma interação mútua de Heisenberg dependente do tempo. Nós então consideramos a assim chamada equação de dois spins, a qual descreve sistemas quânticos de quatro níveis de energia. Uma útil propriedade dessa equação é que o correspondente problema para o caso de campos magnéticos externos paralelos pode ser reduzido ao problema de um único spin em um campo externo efetivo. Isso nos permite gerar uma série de soluções exatas para a equação de dois spins a partir de soluções exatas já conhecidas da equação de um spin. Com base neste fato, nós construímos e apresentamos neste estudo uma lista de novas soluções exatas para a equação de dois spins para diferentes configurações de campos externos e de interação entre as partículas. Utilizando algumas destas soluções obtidas, estudamos a dinâmica da entropia de emaranhamento dos respectivos sistemas considerando diferentes estados de spins inicialmente separáveis. / Recently, an implementation of a universal set of one- and two-qubit logic gates for quantum computing using spin states of single-electron quantum dots was proposed. These results motivated us to develop a formal theoretical study of the corresponding model of two spins placed in an external magnetic field and coupled by a time-dependent mutual interaction of Heisenberg. We then consider the so-called two-spin equation, which describes four-level quantum systems. A useful property of this equation is that the corresponding problem for the case of parallel external magnetic fields can be reduced to the problem of a single spin in an effective external field. This allows us to generate a series of exact solutions for the two-spin equation from the already known exact solutions of the one-spin equation. Based on this fact, we construct and present in this study a list of new exact solutions for the two-spin equation for different configurations of external fields and interaction between particles. Using some of these solutions obtained, we study the dynamics of the entropy of entanglement of the respective systems considering different initially separable spins states.
53

Testovací polygon pro kvantovou distribuci klíčů / Quantum key distribution test polygon

Širjov, Jakub January 2021 (has links)
The aim of this masters thesis is to explain quantum key distribution (QKD) and principle of signal transmission in the quantum channel. Further this thesis complains commercial distributors of QKD technologies and their individual appliances. Practical part of the thesis is separated to 3 parts. First part handles transmission of quantum keys in QKDNetsim simulator. Second part takes care of design and creation of a test polygon that allows for testing of many optical network configurations with quantum signal and normal data traffic being transmitted in a single fiber. Multiple simulations of use of various filter types to supress the signal noise in the program VPIphotonics and tested by QKDNetsim are shown in the last part of this thesis.
54

DETECTING INITIAL CORRELATIONS IN OPEN QUANTUM SYSTEMS

Mullaparambi Babu, Anjala Mullaparambil 01 December 2021 (has links)
In this thesis, we discuss correlations arising between a system and its environment that lead to errors in an open quantum system. Detecting those correlations would be valuable for avoiding and/or correcting those errors. It was studied previously that we can detect correlations by only measuring the system itself if we know the cause of interaction between the two, for example in the case of a dipole-dipole interaction for a spin 1/2-spin 1/2 interaction Hamiltonian. We investigate the unitary, U which is associated with the exchange Hamiltonian and examine the ability to detect initial correlations between a system and its environment for a spin-1/2(qubit) system interacting with a larger higher dimensional environment. We provide bounds for when we can state with certainty that there are initial system-environment correlations given experimental data.
55

Revival structure of the residual entanglement in a three-qubit system

Agelii, Carl, Andersson, Rasmus, Bakke Lindblom, William January 2023 (has links)
The quantum mechanical phenomenon of entanglement plays a key role in areas such as quantum computing and quantum information. Entangled half spin particles, often called qubits, are used to realize quantum based logic which means that studying systems of qubits and their properties is of vital importance to the development of the fields. In this paper we simulate the time evolution of a three-qubit system for varying Hamiltonians and initial states. We look at the revival structure of the classically treated survival probability and compare its structure to that of the quantum mechanical concept of residual entanglement, which is a measure of the system's total entanglement. We do this for three different types of initial states: Uniform, GHZ and W, as well as varying the contributions of certain types of spin-spin interaction models in the Hamiltonian. The spin-spin interaction models that are examined are the DM model and the Heisenberg model. Further we also examine the effect of an added magnetic field in the zdirection, in the form of a Zeeman term. In general, the Zeeman term only affects the behavior of the survival probability, unless the DM term is rotated to not be in a parallel direction, the Heisenberg term generally affects the survival probability and the residual entanglement in the same way. We also note that for the Uniform initial state a dominant Heisenberg seems to remove some of the rapid oscillations in the residual entanglement and survival probability that naturally occur in the DM model, the Zeeman term then reintroduces these high frequencies in the survival probability while not affecting the residual entanglement. For some Hamiltonians we do not see any connection between the revival structure of the survival probability and the residual entanglement, while for some there is a clear connection.
56

Practical Quantum Simulation on Noisy Superconducting Quantum Computers

Ferris, Kaelyn J. 05 June 2023 (has links)
No description available.
57

Functionalized Bilayer Graphene For Quantum Technologies

García-Martínez, Noel 28 September 2021 (has links)
En esta tesis exploramos las posibilidades que ofrecen sistemas basados en grafeno como soporte para tecnologías cuánticas. En particular estudiamos en profundidad las bicapas de grafeno en las que se depositan átomos de hidrógeno. Este tipo de defectos crean momentos magnéticos electrónicos localizados alrededor de los adátomos. Los adátomos de hidrógeno proporcionan a su vez el momento magnético nuclear del protón de su núcleo que interacciona con los momentos magnéticos electrónicos. El Hamiltoniano efectivo de este sistema comprende una multitud de términos que, cuando se combinan adecuadamente, pueden dar lugar a fases tanto débil como fuertemente correlacionadas. Las interacciones de Hamiltoniano efectivo pueden ser controladas a través de dos mecanismos. El primero, la ubicación de los defectos introducidos que puede ser elegida con precisión atómica usando STM. El segundo se basa en la apertura controlada de un gap en la estructura de bandas de las bicapas de localización/descolocación de los estados electrónicos depende fuertemente de la cercanía en energía de estados localizados, por lo que la apertura de un gap permite controlar la extensión de los electrones y su interacción con los defectos. Esta plataforma permitiría realizar experimentalmente un gran número de Hamiltonianos que a día de hoy carecen de realización experimental eligiendo la combinación correcta de parámetros entre los defectos y campo eléctrico (o lo que es lo mismo, extensión de los estados electrónicos).
58

Open quantum systems

Granlund Gustafsson, Anton January 2023 (has links)
In this Bachelor thesis project, the Lindblad master equation is derived, both as the most general way of modeling interaction with an environment that lacks memory, and through microscopic derivations focused on assumptions about the way the system interacts with its environment (weak-coupling, Born-Markov and rotating wave approximations). It is then applied to a two-level system (qubit).
59

EXPLORATION OF QUBIT ASSISTED CAVITY OPTOMECHANICS

Kelly, Stephen C. 18 August 2014 (has links)
No description available.
60

Exterior calculus and fermionic quantum computation

Vourdas, Apostolos 20 September 2018 (has links)
Yes / Exterior calculus with its three operations meet, join and hodge star complement, is used for the representation of fermion-hole systems and for fermionic analogues of logical gates. Two different schemes that implement fermionic quantum computation, are proposed. The first scheme compares fermionic gates with Boolean gates, and leads to novel electronic devices that simulate fermionic gates. The second scheme uses a well known map between fermionic and multi-qubit systems, to simulate fermionic gates within multi-qubit systems.

Page generated in 0.0195 seconds