• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 9
  • 8
  • 2
  • 1
  • Tagged with
  • 48
  • 31
  • 17
  • 15
  • 13
  • 11
  • 11
  • 10
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Spectroscopy of artificial atoms and molecules

Tuorila, J. (Jani) 25 May 2010 (has links)
Abstract Elementary experiments of atomic physics and quantum optics can be reproduced on a circuit board using elements built of superconducting materials. Such systems can show discrete energy levels similar to those of atoms. With respect to their natural cousins, the enhanced controllability of these ‘artificial atoms’ allows the testing of the laws of physics in a novel range of parameters. Also, the study of such systems is important for their proposed use as the quantum bits (qubits) of the foreseen quantum computer. In this thesis, we have studied an artificial atom coupled with a harmonic oscillator formed by an LC-resonator. At the quantum limit, the interaction between the two can be shown to mimic that of ordinary matter and light. The properties of the system were studied by measuring the reflected signal in a capacitively coupled transmission line. In atomic physics, this has an analogy with the absorption spectrum of electromagnetic radiation. To simulate such measurements, we have derived the corresponding equations of motion using the quantum network theory and the semi-classical approximation. The calculated absorption spectrum shows a good agreement with the experimental data. By extracting the power consumption in different parts of the circuit, we have calculated the energy flow between the atom and the oscillator. It shows that, in a certain parameter range, the absorption spectrum obeys the Franck-Condon principle, and can be interpreted in terms of vibronic transitions of a diatomic molecule. A coupling with a radiation field shifts the spectral lines of an atom. In our system, the interaction between the atom and the field is nonlinear, and we have shown that a strong monochromatic driving results in energy shifts unforeseen in natural or, even, other artificial atoms. We have used the Floquet method to calculate the quasienergies of the coupled system of atom and field. The oscillator was treated as a small perturbation probing the quasienergies, and the resulting absorption spectrum agrees with the reflection measurement.
32

Soluções exatas e medidas de emaranhamento em sistemas de spins / Exact Solutions and Entanglement Measures in Spin Systems

Santos, Marcelo Meireles dos 01 February 2018 (has links)
Recentemente, uma implementação de um conjunto universal de portas lógicas de um e dois qubits para computação quântica usando estados de spin de pontos quânticos de um único elétron foi proposta. Estes resultados nos motivaram a desenvolver um estudo teórico formal do correspondente modelo de dois spins colocados em um campo magnético externo e acoplados por uma interação mútua de Heisenberg dependente do tempo. Nós então consideramos a assim chamada equação de dois spins, a qual descreve sistemas quânticos de quatro níveis de energia. Uma útil propriedade dessa equação é que o correspondente problema para o caso de campos magnéticos externos paralelos pode ser reduzido ao problema de um único spin em um campo externo efetivo. Isso nos permite gerar uma série de soluções exatas para a equação de dois spins a partir de soluções exatas já conhecidas da equação de um spin. Com base neste fato, nós construímos e apresentamos neste estudo uma lista de novas soluções exatas para a equação de dois spins para diferentes configurações de campos externos e de interação entre as partículas. Utilizando algumas destas soluções obtidas, estudamos a dinâmica da entropia de emaranhamento dos respectivos sistemas considerando diferentes estados de spins inicialmente separáveis. / Recently, an implementation of a universal set of one- and two-qubit logic gates for quantum computing using spin states of single-electron quantum dots was proposed. These results motivated us to develop a formal theoretical study of the corresponding model of two spins placed in an external magnetic field and coupled by a time-dependent mutual interaction of Heisenberg. We then consider the so-called two-spin equation, which describes four-level quantum systems. A useful property of this equation is that the corresponding problem for the case of parallel external magnetic fields can be reduced to the problem of a single spin in an effective external field. This allows us to generate a series of exact solutions for the two-spin equation from the already known exact solutions of the one-spin equation. Based on this fact, we construct and present in this study a list of new exact solutions for the two-spin equation for different configurations of external fields and interaction between particles. Using some of these solutions obtained, we study the dynamics of the entropy of entanglement of the respective systems considering different initially separable spins states.
33

Strong radiation-matter interaction in a driven superconducting quantum system

Pietikäinen, I. (Iivari) 18 April 2019 (has links)
Abstract In this thesis we study the interaction between radiation and matter using superconducting circuits that behave analogously with the conventional photon-atom interaction in quantum optics. The research is done with a system consisting of a waveguide resonator (radiation) strongly coupled to a transmon device (matter). We focus on the phenomena caused by strong coupling between the radiation and matter, and by driving the resonator to higher excited states with a strong monochromatic radiation. These have been studied little in the traditional radiation-matter systems. Increasing the strength of the monochromatic radiation drive, the dynamics of the system experiences a transition from the quantum to the classical regime. Also, the free-particle states of the transmon start being populated. In the weak driving limit, the transmon can be regarded as a two-state system. As a consequence, the resonator-transmon system is conventionally discussed in terms of the linear Jaynes–Cummings model. However, for strong coupling the Bloch–Siegert shift, caused by the terms neglected in the Jaynes–Cummings model, is strong and the Jaynes–Cummings model is insufficient for describing the dynamics of the system. We study the effects caused by strong coupling and the excitation of the higher transmon states instigated by the driving of the resonator. With reflection spectroscopy, we measure the absorption spectrum of the system and compare this with the spectrum calculated numerically using the Floquet–Born–Markov approach. We find that, in the region of the quantum-to-classical transition, the two-state approximation for the transmon is insufficient and the higher transmon states are necessary for accurate simulations. By calculating the average resonator occupation, we compare different numerical models: the Lindblad master equation, the Floquet–Born–Markov, and the semiclassical model. Coupling a transmon to a resonator shifts the energy levels of the resonator. This shift in the energy levels prevents the higher resonator states from being populated if the system is weakly driven with a frequency that is near the resonance frequency of the resonator. We simulate this photon blockade numerically and show that the blockade is substantially different for the two-state and multistate transmon approximations. / Original papers Original papers are not included in the electronic version of the dissertation. Pietikäinen, I., Danilin, S., Kumar, K. S., Vepsäläinen, A., Golubev, D. S., Tuorila, J., & Paraoanu, G. S. (2017). Observation of the Bloch-Siegert shift in a driven quantum-to-classical transition. Physical Review B, 96(2). https://doi.org/10.1103/PhysRevB.96.020501 http://jultika.oulu.fi/Record/nbnfi-fe201803073899 Pietikäinen, I., Danilin, S., Kumar, K. S., Tuorila, J., & Paraoanu, G. S. (2018). Multilevel Effects in a Driven Generalized Rabi Model. Journal of Low Temperature Physics, 191(5–6), 354–364. https://doi.org/10.1007/s10909-018-1857-8 http://jultika.oulu.fi/Record/nbnfi-fe2018061325770 Pietikäinen, I., Tuorila, J., Golubev, D. S., & Paraoanu, G. S. (2019) Quantum-to-classical transition in the driven-dissipative Josephson pendulum coupled to a resonator, Manuscript. https://arxiv.org/abs/1901.05655
34

Exchange and superexchange interactions in quantum dot systems

Deng, Kuangyin 10 February 2021 (has links)
Semiconductor quantum dot systems offer a promising platform for quantum computation. And these quantum computation candidates are normally based on spin or charge properties of electrons. In these systems, we focus on quantum computation based on electron spins since these systems has good scalability, long coherence times, and rapid gate operations. And this thesis focuses on building a theoretical description of quantum dot systems and the link between theory and experiments. In many quantum dot systems, exchange interactions are the primary mechanism used to control spins and generate entanglement. And exchange energies are normally positive, which limits control flexibility. However, recent experiments show that negative exchange interactions can arise in a linear three-dot system when a two-electron double quantum dot is exchange coupled to a larger quantum dot containing on the order of one hundred electrons. The origin of this negative exchange can be traced to the larger quantum dot exhibiting a spin triplet-like rather than singlet-like ground state. Here we show using a microscopic model based on the configuration interaction (CI) method that both triplet-like and singlet-like ground states are realized depending on the number of electrons. In the case of only four electrons, a full CI calculation reveals that triplet-like ground states occur for sufficiently large dots. These results hold for symmetric and asymmetric quantum dots in both Si and GaAs, showing that negative exchange interactions are robust in few-electron double quantum dots and do not require large numbers of electrons. Recent experiments also show the potential to utilize large quantum dots to mediate superexchange interaction and generate entanglement between distant spins. This opens up a possible mechanism for selectively coupling pairs of remote spins in a larger network of quantum dots. Taking advantage of this opportunity requires a deeper understanding of how to control superexchange interactions in these systems. Here, we consider a triple-dot system arranged in linear and triangular geometries. We use CI calculations to investigate the interplay of superexchange and nearest-neighbor exchange interactions as the location, detuning, and electron number of the mediating dot are varied. We show that superexchange processes strongly enhance and increase the range of the net spin-spin exchange as the dots approach a linear configuration. Furthermore, we show that the strength of the exchange interaction depends sensitively on the number of electrons in the mediator. Our results can be used as a guide to assist further experimental efforts towards scaling up to larger, two-dimensional quantum dot arrays. / Doctor of Philosophy / Semiconductor quantum dot systems offer a promising platform for quantum computation. And these quantum computation candidates are normally based on spin or charge properties of electrons. In these systems, we focus on quantum computation based on electron spins since these systems has good scalability, long coherence times, and rapid gate operations. And this thesis focuses on building a theoretical description of quantum dot systems and the link between theory and experiments. A key requirement for quantum computation is the ability to control individual qubits and couple them together to create entanglement. In quantum dot spin qubit systems, the exchange interaction is the primary mechanism used to accomplish these tasks. This thesis is about attaining a better understanding of exchange interactions in quantum dot spin qubit systems and how they can be manipulated by changing the configuration of the system and the number of electrons. In this thesis, we show negative exchange energy can arise in large size quantum dots. This result holds for symmetric and asymmetric shape of the large dots. And we also provide a quantitative analysis of how large quantum dots can be used to create long-distance spin-spin interactions. This capability would greatly increase the flexibility in designing quantum processors built by quantum dot spins. The interplay of these systems with different geometry can serve as a guide to assist further experiments and may hopefully be the basis to build two-dimensional quantum dot arrays.
35

La boîte quantique triple : nouvelles oscillations et incorporation de microaimants

Poulin-Lamarre, Gabriel January 2014 (has links)
Les qubits de spin sont des candidats prometteurs pour le traitement de l’information quantique en raison de leurs longs temps de cohérence. Les deux principaux qubits présents dans un système à trois spins ont été démontré au cours des dernières années dans la boîte quantique latérale triple. Le diagramme des niveaux d’énergie de quelques électrons dans la boîte quantique triple est beaucoup plus complexe que son homologue à deux ou à une boîte. Il en résulte des possibilités de fuites hors des qubits ciblés. Dans ce mémoire, nous présenterons une nouvelles technologie pour améliorer le contrôle des états de spin et augmenter le temps de cohérence des qubits. Nous avons effectué des mesures préliminaires sur des échantillons sur lesquels a été incorporé un microaimant. Ce microaimant crée un champ magnétique non-uniforme au niveau des boîtes quantiques qui sera utilisé pour effectuer une rotation de spin et pour améliorer certains types d’oscillations. Nous avons optimisé la forme des géométries afin de créer des gradients de champ magnétique optimaux spécifiquement pour la boîte quantique triple. Différents problèmes ont été encourus et la stratégie que nous avons adoptée pour les régler sera présentée. De plus, nous avons analysé les phénomènes de fuites entre les états quantiques en étudiant la réponse d’un système à trois spins en fonction de différentes impulsions électriques. Nous présentons deux processus d’interférence jamais répertoriés entre les qubits de la boîte quantique triple. Afin d’identifier l’origine de ces interférences, nous avons utilisé leur dépendance en champ magnétique.
36

Etude de l'effet de l'anisotropie magnétique sur la phase dynamique et sur la phase géométrique des bits quantiques de spins électroniques d'ions de métaux de transition Mn2+, Co2+, Fe3+ isolés et des complexes d'ions Fe3+ dans l'oxyde de zinc monocristallin / Study of the effect of the magnetic anisotropy on the dynamic phase and on the geometric phase qubits of electron spins of transition metals isolated ions Mn2+, Co2+, Fe3+, and Iron Complexes (Fe3+/Cs+ and Fe3+/Na+) in the zinc oxide single crystal

Benzid, Khalif 24 February 2016 (has links)
Nous avons étudié, par RPE impulsionnelle, la cohérence quantique et des spins électroniques des ions de transition Mn2+, Co2+, Fe3+, et des complexes Fe3+/Cs+ et Fe3+/Na+, tous présents dans le ZnO monocristallin. Nous avons trouvé que l’anisotropie magnétique peut altérer la cohérence de la phase dynamique des qubits des spins électroniques. Nous avons mesuré une faible décohérence pour les spins d’ions Mn2+et Fe3+ dans ZnO, qui ont tous deux une faible anisotropie magnétique uniaxiale, tandis que les ions Co2+ isolés avec une très forte anisotropie magnétique uniaxiale, une décohérence rapide a été mis en évidence. Nous avons trouvé que les spins électroniques des complexes de type Fe3+/Cs+, ayant un tenseur d’anisotropie magnétique plus complexe que la simple anisotropie uniaxiale des ions Fe3+ isolés, possèdent presque le même temps de décohérence. Par la méthode des perturbations, nous avons mis en évidence théoriquement un terme supplémentaire à la phase habituelle de Berry, dû à l’anisotropie magnétique et qui existe dans tout système ayant un spin S>1/2. / We studied by pulsed EPR (p-EPR), the quantum coherence of electronic spins qubits of isolated transition metal ions of Mn2+, Co2+, Fe3+ and Fe3+/Cs+ as well as Fe3+/Na+ complexes, all found as traces in mono-crystalline ZnO. Indeed, we experimentally demonstrated that the magnetic anisotropy can alter the coherence of the dynamic phase of electronic spins qubits. We found a small decoherence for Mn2+ and Fe3+, spins having a small uniaxial magnetic anisotropy, and on the contrary, we found a very strong decoherence for Co2+ spins having a very strong uniaxial magnetic anisotropy. We found that the electronic spins of the Fe3+/Cs+ complex, having a more complex tensor magnetic anisotropy compared to the simplest uniaxial one of isolated Fe3+ spins in ZnO, have almost the same coherence time. By the perturbation method, we have found theoretically an additional term to the usual geometric Berry phase, due to the magnetic anisotropy which exists in any system having a spin S>1/2.
37

Quantum Circuit Based on Electron Spins in Semiconductor Quantum Dots

Hsieh, Chang-Yu 07 March 2012 (has links)
In this thesis, I present a microscopic theory of quantum circuits based on interacting electron spins in quantum dot molecules. We use the Linear Combination of Harmonic Orbitals-Configuration Interaction (LCHO-CI) formalism for microscopic calculations. We then derive effective Hubbard, t-J, and Heisenberg models. These models are used to predict the electronic, spin and transport properties of a triple quantum dot molecule (TQDM) as a function of topology, gate configuration, bias and magnetic field. With these theoretical tools and fully characterized TQDMs, we propose the following applications: 1. Voltage tunable qubit encoded in the chiral states of a half-filled TQDM. We show how to perform single qubit operations by pulsing voltages. We propose the "chirality-to-charge" conversion as the measurement scheme and demonstrate the robustness of the chirality-encoded qubit due to charge fluctuations. We derive an effective qubit-qubit Hamiltonian and demonstrate the two-qubit gate. This provides all the necessary operations for a quantum computer built with chirality-encoded qubits. 2. Berry's phase. We explore the prospect of geometric quantum computing with chirality-encoded qubit. We construct a Herzberg circuit in the voltage space and show the accumulation of Berry's phase. 3. Macroscopic quantum states on a semiconductor chip. We consider a linear chain of TQDMs, each with 4 electrons, obtained by nanostructuring a metallic gate in a field effect transistor. We theoretically show that the low energy spectrum of the chain maps onto that of a spin-1 chain. Hence, we show that macroscopic quantum states, protected by a Haldane gap from the continuum, emerge. In order to minimize decoherence of electron spin qubits, we consider using electron spins in the p orbitals of the valence band (valence holes) as qubits. We develop a theory of valence hole qubit within the 4-band k.p model. We show that static magnetic fields can be used to perform single qubit operations. We also show that the qubit-qubit interactions are sensitive to the geometry of a quantum dot network. For vertical qubit arrays, we predict that there exists an optimal qubit separation suitable for the voltage control of qubit-qubit interactions.
38

Quantum Circuit Based on Electron Spins in Semiconductor Quantum Dots

Hsieh, Chang-Yu 07 March 2012 (has links)
In this thesis, I present a microscopic theory of quantum circuits based on interacting electron spins in quantum dot molecules. We use the Linear Combination of Harmonic Orbitals-Configuration Interaction (LCHO-CI) formalism for microscopic calculations. We then derive effective Hubbard, t-J, and Heisenberg models. These models are used to predict the electronic, spin and transport properties of a triple quantum dot molecule (TQDM) as a function of topology, gate configuration, bias and magnetic field. With these theoretical tools and fully characterized TQDMs, we propose the following applications: 1. Voltage tunable qubit encoded in the chiral states of a half-filled TQDM. We show how to perform single qubit operations by pulsing voltages. We propose the "chirality-to-charge" conversion as the measurement scheme and demonstrate the robustness of the chirality-encoded qubit due to charge fluctuations. We derive an effective qubit-qubit Hamiltonian and demonstrate the two-qubit gate. This provides all the necessary operations for a quantum computer built with chirality-encoded qubits. 2. Berry's phase. We explore the prospect of geometric quantum computing with chirality-encoded qubit. We construct a Herzberg circuit in the voltage space and show the accumulation of Berry's phase. 3. Macroscopic quantum states on a semiconductor chip. We consider a linear chain of TQDMs, each with 4 electrons, obtained by nanostructuring a metallic gate in a field effect transistor. We theoretically show that the low energy spectrum of the chain maps onto that of a spin-1 chain. Hence, we show that macroscopic quantum states, protected by a Haldane gap from the continuum, emerge. In order to minimize decoherence of electron spin qubits, we consider using electron spins in the p orbitals of the valence band (valence holes) as qubits. We develop a theory of valence hole qubit within the 4-band k.p model. We show that static magnetic fields can be used to perform single qubit operations. We also show that the qubit-qubit interactions are sensitive to the geometry of a quantum dot network. For vertical qubit arrays, we predict that there exists an optimal qubit separation suitable for the voltage control of qubit-qubit interactions.
39

Quantum Dots in Gated Nanowires and Nanotubes

Churchill, Hugh Olen Hill 17 August 2012 (has links)
This thesis describes experiments on quantum dots made by locally gating one-dimensional quantum wires. The first experiment studies a double quantum dot device formed in a Ge/Si core/shell nanowire. In addition to measuring transport through the double dot, we detect changes in the charge occupancy of the double dot by capacitively coupling it to a third quantum dot on a separate nanowire using a floating gate. We demonstrate tunable tunnel coupling of the double dot and quantify the strength of the tunneling using the charge sensor. The second set of experiments concerns carbon nanotube double quantum dots. In the first nanotube experiment, spin-dependent transport through the double dot is compared in two sets of devices. The first set is made with carbon containing the natural abundance of \(^{12}C\) (99%) and \(^{13}C\) (1%), the second set with the 99% \(^{13}C\) and 1% \(^{12}C\). In the devices with predominantly \(^{13}C\), we find evidence in spin-dependent transport of the interaction between the electron spins and the \(^{13}C\) nuclear spins that was much stronger than expected and not present in the \(^{12}C\) devices. In the second nanotube experiment, pulsed gate experiments are used to measure the timescales of spin relaxation and dephasing in a two-electron double quantum dot. The relaxation time is longest at zero magnetic field and goes through a minimum at higher field, consistent with the spin-orbit-modified electronic spectrum of carbon nanotubes. We measure a short dephasing time consistent with the anomalously strong electron-nuclear interaction inferred from the first nanotube experiment. / Physics
40

Quantum Circuit Based on Electron Spins in Semiconductor Quantum Dots

Hsieh, Chang-Yu 07 March 2012 (has links)
In this thesis, I present a microscopic theory of quantum circuits based on interacting electron spins in quantum dot molecules. We use the Linear Combination of Harmonic Orbitals-Configuration Interaction (LCHO-CI) formalism for microscopic calculations. We then derive effective Hubbard, t-J, and Heisenberg models. These models are used to predict the electronic, spin and transport properties of a triple quantum dot molecule (TQDM) as a function of topology, gate configuration, bias and magnetic field. With these theoretical tools and fully characterized TQDMs, we propose the following applications: 1. Voltage tunable qubit encoded in the chiral states of a half-filled TQDM. We show how to perform single qubit operations by pulsing voltages. We propose the "chirality-to-charge" conversion as the measurement scheme and demonstrate the robustness of the chirality-encoded qubit due to charge fluctuations. We derive an effective qubit-qubit Hamiltonian and demonstrate the two-qubit gate. This provides all the necessary operations for a quantum computer built with chirality-encoded qubits. 2. Berry's phase. We explore the prospect of geometric quantum computing with chirality-encoded qubit. We construct a Herzberg circuit in the voltage space and show the accumulation of Berry's phase. 3. Macroscopic quantum states on a semiconductor chip. We consider a linear chain of TQDMs, each with 4 electrons, obtained by nanostructuring a metallic gate in a field effect transistor. We theoretically show that the low energy spectrum of the chain maps onto that of a spin-1 chain. Hence, we show that macroscopic quantum states, protected by a Haldane gap from the continuum, emerge. In order to minimize decoherence of electron spin qubits, we consider using electron spins in the p orbitals of the valence band (valence holes) as qubits. We develop a theory of valence hole qubit within the 4-band k.p model. We show that static magnetic fields can be used to perform single qubit operations. We also show that the qubit-qubit interactions are sensitive to the geometry of a quantum dot network. For vertical qubit arrays, we predict that there exists an optimal qubit separation suitable for the voltage control of qubit-qubit interactions.

Page generated in 0.0339 seconds