• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 3
  • 2
  • 1
  • Tagged with
  • 37
  • 37
  • 19
  • 17
  • 16
  • 16
  • 14
  • 14
  • 14
  • 12
  • 11
  • 10
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Ontology-Based Query Answering for Probabilistic Temporal Data: Extended Version

Koopmann, Patrick 20 June 2022 (has links)
We investigate ontology-based query answering for data that are both temporal and probabilistic, which might occur in contexts such as stream reasoning or situation recognition with uncertain data. We present a framework that allows to represent temporal probabilistic data, and introduce a query language with which complex temporal and probabilistic patterns can be described. Specifically, this language combines conjunctive queries with operators from linear time logic as well as probability operators. We analyse the complexities of evaluating queries in this language in various settings. While in some cases, combining the temporal and the probabilistic dimension in such a way comes at the cost of increased complexity, we also determine cases for which this increase can be avoided. / This is an extended version of the article to appear in the proceedings of AAAI 2019.
32

Temporal Query Answering in DL-Lite with Negation

Borgwardt, Stefan, Thost, Veronika 20 June 2022 (has links)
Ontology-based query answering augments classical query answering in databases by adopting the open-world assumption and by including domain knowledge provided by an ontology. We investigate temporal query answering w.r.t. ontologies formulated in DL-Lite, a family of description logics that captures the conceptual features of relational databases and was tailored for efficient query answering. We consider a recently proposed temporal query language that combines conjunctive queries with the operators of propositional linear temporal logic (LTL). In particular, we consider negation in the ontology and query language, and study both data and combined complexity of query entailment.
33

Closed-World Semantics for Conjunctive Queries with Negation over ELH⊥ Ontologies: Extended Version

Borgwardt, Stefan, Forkel, Walter 28 December 2023 (has links)
Ontology-mediated query answering is a popular paradigm for enriching answers to user queries with background knowledge. For querying the absence of information, however, there exist only few ontology-based approaches. Moreover, these proposals conflate the closed-domain and closed-world assumption, and therefore are not suited to deal with the anonymous objects that are common in ontological reasoning. We propose a new closed-world semantics for answering conjunctive queries with negation over ontologies formulated in the description logic ELH⊥, which is based on the minimal canonical model. We propose a rewriting strategy for dealing with negated query atoms, which shows that query answering is possible in polynomial time in data complexity.
34

Finding New Diamonds: Temporal Minimal-World Query Answering over Sparse ABoxes: Extended Version

Borgwardt, Stefan, Forkel, Walter, Kovtunova, Alisa 29 December 2023 (has links)
Lightweight temporal ontology languages have become a very active field of research in recent years. Many real-world applications, like processing electronic health records (EHRs), inherently contain a temporal dimension, and require efficient reasoning algorithms. Moreover, since medical data is not recorded on a regular basis, reasoners must deal with sparse data with potentially large temporal gaps. In this paper, we introduce a temporal extension of the tractable language ELH⊥, which features a new class of convex diamond operators that can be used to bridge temporal gaps. We develop a completion algorithm for our logic, which shows that entailment remains tractable. Based on this, we develop a minimal-world semantics for answering metric temporal conjunctive queries with negation. We show that query answering is combined first-order rewritable, and hence in polynomial time in data complexity.
35

Efficient query answering in peer data management systems

Roth, Armin 12 March 2012 (has links)
Peer-Daten-Management-Systeme (PDMS) bestehen aus einer hochdynamischen Menge heterogener, autonomer Peers. Die Peers beantworten Anfragen einerseits gegen lokal gespeicherte Daten und reichen sie andererseits nach einer Umschreibung anhand von Schema-Mappings an benachbarte Peers weiter. Solche aufgrund fehlender zentraler Komponenten eigentlich hoch- flexiblen Systeme leiden bei zunehmender Anzahl von Peers unter erheblichen Effi- zienzproblemen. Die Gründe hierfür liegen in der massiven Redundanz der Pfade im Netzwerk der Peers und im Informationsverlust aufgrund von Projektionen entlang von Mapping-Pfaden. Anwender akzeptieren in hochskalierten Umgebungen zum Datenaustausch in vielen Anwendungsszenarien Konzessionen an die Vollständigkeit der Anfrageergebnisse. Unser Ansatz sieht in der Vollständigkeit ein Optimierungsziel und verfolgt einen Kompromiß zwischen Nutzen und Kosten der Anfragebearbeitung. Hierzu schlagen wir mehrere Strategien für Peers vor, um zu entscheiden, an welche Nachbar-Peers Anfragen weitergeleitet werden. Peers schließen dabei Mappings von der Anfragebearbeitung aus, von denen sie ein geringes Verhältnis von Ergebnisgröße zu Kosten, also geringe Effizienz erwarten. Als Basis dieser Schätzungen wenden wir selbstadaptive Histogramme über die Ergebniskardinalität an und weisen nach, daß diese in dieser hochdynamischen Umgebung ausreichende Genauigkeit aufweisen. Wir schlagen einen Kompromiß zwischen der Nutzung von Anfrageergebnissen zur Anpassung dieser Metadaten-Statistiken und der Beschneidung von Anfrageplänen vor, um den entsprechenden Zielkonflikt aufzulösen. Für eine Optimierungsstrategie, die das für die Anfragebearbeitung verwendete Zeit-Budget limitiert, untersuchen wir mehrere Varianten hinsichtlich des Effizienzsteigerungspotentials. Darüber hinaus nutzen wir mehrdimensionale Histogramme über die Überlappung zweier Datenquellen zur gezielten Verminderung der Redundanz in der Anfragebearbeitung. / Peer data management systems (PDMS) consist of a highly dynamic set of autonomous, heterogeneous peers connected with schema mappings. Queries submitted at a peer are answered with data residing at that peer and by passing the queries to neighboring peers. PDMS are the most general architecture for distributed integrated information systems. With no need for central coordination, PDMS are highly flexible. However, due to the typical massive redundancy in mapping paths, PDMS tend to be very inefficient in computing the complete query result as the number of peers increases. Additionally, information loss is cumulated along mapping paths due to selections and projections in the mappings. Users usually accept concessions on the completeness of query answers in large-scale data sharing settings. Our approach turns completeness into an optimization goal and thus trades off benefit and cost of query answering. To this end, we propose several strategies that guide peers in their decision to which neighbors rewritten queries should be sent. In effect, the peers prune mappings that are expected to contribute few data. We propose a query optimization strategy that limits resource consumption and show that it can drastically increase efficiency while still yielding satisfying completeness of the query result. To estimate the potential data contribution of mappings, we adopted self-tuning histograms for cardinality estimation. We developed techniques that ensure sufficient query feedback to adapt these statistics to massive changes in a PDMS. Additionally, histograms can serve to maintain statistics on data overlap between alternative mapping paths. Building on them, redundant query processing is reduced by avoiding overlapping areas of the multi-dimensional data space.
36

Approximation of OLAP queries on data warehouses / Approximation aux requêtes OLAP sur les entrepôts de données

Cao, Phuong Thao 20 June 2013 (has links)
Nous étudions les réponses proches à des requêtes OLAP sur les entrepôts de données. Nous considérons les réponses relatives aux requêtes OLAP sur un schéma, comme les distributions avec la distance L1 et rapprocher les réponses sans stocker totalement l'entrepôt de données. Nous présentons d'abord trois méthodes spécifiques: l'échantillonnage uniforme, l'échantillonnage basé sur la mesure et le modèle statistique. Nous introduisons également une distance d'édition entre les entrepôts de données avec des opérations d'édition adaptées aux entrepôts de données. Puis, dans l'échange de données OLAP, nous étudions comment échantillonner chaque source et combiner les échantillons pour rapprocher toutes requêtes OLAP. Nous examinons ensuite un contexte streaming, où un entrepôt de données est construit par les flux de différentes sources. Nous montrons une borne inférieure de la taille de la mémoire nécessaire aux requêtes approximatives. Dans ce cas, nous avons les réponses pour les requêtes OLAP avec une mémoire finie. Nous décrivons également une méthode pour découvrir les dépendances statistique, une nouvelle notion que nous introduisons. Nous recherchons ces dépendances en basant sur l'arbre de décision. Nous appliquons la méthode à deux entrepôts de données. Le premier simule les données de capteurs, qui fournissent des paramètres météorologiques au fil du temps et de l'emplacement à partir de différentes sources. Le deuxième est la collecte de RSS à partir des sites web sur Internet. / We study the approximate answers to OLAP queries on data warehouses. We consider the relative answers to OLAP queries on a schema, as distributions with the L1 distance and approximate the answers without storing the entire data warehouse. We first introduce three specific methods: the uniform sampling, the measure-based sampling and the statistical model. We introduce also an edit distance between data warehouses with edit operations adapted for data warehouses. Then, in the OLAP data exchange, we study how to sample each source and combine the samples to approximate any OLAP query. We next consider a streaming context, where a data warehouse is built by streams of different sources. We show a lower bound on the size of the memory necessary to approximate queries. In this case, we approximate OLAP queries with a finite memory. We describe also a method to discover the statistical dependencies, a new notion we introduce. We are looking for them based on the decision tree. We apply the method to two data warehouses. The first one simulates the data of sensors, which provide weather parameters over time and location from different sources. The second one is the collection of RSS from the web sites on Internet.
37

Techniques d'optimisation pour des données semi-structurées du web sémantique / Database techniques for semantics-rich semi-structured Web data

Leblay, Julien 27 September 2013 (has links)
RDF et SPARQL se sont imposés comme modèle de données et langage de requêtes standard pour décrire et interroger les données sur la Toile. D’importantes quantités de données RDF sont désormais disponibles, sous forme de jeux de données ou de méta-données pour des documents semi-structurés, en particulier XML. La coexistence et l’interdépendance grandissantes entre RDF et XML rendent de plus en plus pressant le besoin de représenter et interroger ces données conjointement. Bien que de nombreux travaux couvrent la production et la publication, manuelles ou automatiques, d’annotations pour données semi-structurées, peu de recherches ont été consacrées à l’exploitation de telles données. Cette thèse pose les bases de la gestion de données hybrides XML-RDF. Nous présentons XR, un modèle de données accommodant l’aspect structurel d’XML et la sémantique de RDF. Le modèle est suffisamment général pour représenter des données indépendantes ou interconnectées, pour lesquelles chaque nœud XML est potentiellement une ressource RDF. Nous introduisons le langage XRQ, qui combine les principales caractéristiques des langages XQuery et SPARQL. Le langage permet d’interroger la structure des documents ainsi que la sémantique de leurs annotations, mais aussi de produire des données semi-structurées annotées. Nous introduisons le problème de composition de requêtes dans le langage XRQ et étudions de manière exhaustive les techniques d’évaluation de requêtes possibles. Nous avons développé la plateforme XRP, implantant les algorithmes d’évaluation de requêtes dont nous comparons les performances expérimentalement. Nous présentons une application reposant sur cette plateforme pour l’annotation automatique et manuelle de pages trouvées sur la Toile. Enfin, nous présentons une technique pour l’inférence RDFS dans les systèmes de gestion de données RDF (et par extension XR). / Since the beginning of the Semantic Web, RDF and SPARQL have become the standard data model and query language to describe resources on the Web. Large amounts of RDF data are now available either as stand-alone datasets or as metadata over semi-structured documents, typically XML. The ability to apply RDF annotations over XML data emphasizes the need to represent and query data and metadata simultaneously. While significant efforts have been invested into producing and publishing annotations manually or automatically, little attention has been devoted to exploiting such data. This thesis aims at setting database foundations for the management of hybrid XML-RDF data. We present a data model capturing the structural aspects of XML data and the semantics of RDF. Our model is general enough to describe pure XML or RDF datasets, as well as RDF-annotated XML data, where any XML node can act as a resource. We also introduce the XRQ query language that combines features of both XQuery and SPARQL. XRQ not only allows querying the structure of documents and the semantics of their annotations, but also producing annotated semi-structured data on-the-fly. We introduce the problem of query composition in XRQ, and exhaustively study query evaluation techniques for XR data to demonstrate the feasibility of this data management setting. We have developed an XR platform on top of well-known data management systems for XML and RDF. The platform features several query processing algorithms, whose performance is experimentally compared. We present an application built on top of the XR platform. The application provides manual and automatic annotation tools, and an interface to query annotated Web page and publicly available XML and RDF datasets concurrently. As a generalization of RDF and SPARQL, XR and XRQ enables RDFS-type of query answering. In this respect, we present a technique to support RDFS-entailments in RDF (and by extension XR) data management systems.

Page generated in 0.0664 seconds