• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 47
  • 47
  • 10
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 251
  • 251
  • 45
  • 43
  • 36
  • 27
  • 25
  • 24
  • 21
  • 19
  • 18
  • 18
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Development of polymeric materials to inhibit bacterial quorum sensing

Cavaleiro, Eliana Marisa dos Santos January 2014 (has links)
Bacterial infections are an increasing problem for human health. In fact, an increasing number of infections are caused by bacteria that are resistant to most antibiotics and their combinations. A new solution to fight bacteria and infectious diseases, without promoting antimicrobial resistance, is required. A promise strategy is the disruption or attenuation of bacterial Quorum Sensing (QS), a refined system that bacteria use to communicate. In a QS event, bacteria produce and release specific small chemicals, signal molecules - autoinducers (AIs) - into the environment. AIs regulate gene expression as a function of cell population density. Phenotypes mediated by QS (QS- phenotypes) include virulence factors, toxin production, antibiotic resistance and biofilm formation. In this work, two polymeric materials (linear polymers and molecularly imprinted nanoparticles) were developed and their ability to attenuate QS was evaluated. Both types of polymers should be able to adsorb bacterial signal molecules, limiting their availability in the extracellular environment, with expected disruption of QS. Linear polymers were composed by methyl methacrylate as backbone and itaconic acid or methacrylic acid as functional monomer. IA and MAA monomers were identified by computer modelling to have strong interactions with the AIs produced by Gram-negative bacteria. Cont/d.
132

Um novo gene de Pseudomonas aeruginosa envolvido em percepção de quórum / A novel gene involved in Pseudomonas aeruginosa quorum sensing

Nascimento, Ana Paula Barbosa do 10 June 2014 (has links)
Pseudomonas aeruginosa é uma gamaproteobactéria com capacidade de colonizar diversos tipos de ambiente e infectar hospedeiros filogeneticamente distintos. Em humanos, comporta-se como um patógeno oportunista,estando frequentemente relacionada à infecções em indivíduos imunocomprometidos e indivíduos portadores de fibrose cística. Um mecanismo importante para a versatilidade de P. aeruginosa é o sistema de percepção de quórum (QS), onde a bactéria pode vincular expressão gênica à densidade populacional e às características do ambiente. Atualmente, sabe-se que muitos outros reguladores estão interligados com QS, entre eles, a proteína reguladora RsmA e os pequenos RNAs RsmZ e RsmY. Além disso, diversos fatores importantes para a patogenicidade da bactéria são reguladas por QS. Em P. aeruginosa PA14, um fator importante para a patogenicidade em diversos hospedeiros é a proteína KerV, cujo envolvimento com QS foi descrito pela primeira vez neste trabalho. A linhagem D12, que possui uma deleção no gene kerV, mostrou alterações em fenótipos regulados por QS, como a maior produção de piocianina, composto que contribui para virulência e persistência das infecções causada por P. aeruginosa. Por ser facilmente detectável e pela regulação de sua síntese não ter sido completamente explorada em PA14, a expressão dos genes responsáveis pela produção de piocianina é um interessante repórter na investigação do possível envolvimento de KerV com QS. Além de piocianina, D12 apresenta níveis reduzidos de ramnolipídeos. Esses fenótipos somados se assemelham aos fenótipos da mutação de rsmA, sugerindo o envolvimento de KerV com os sistemas QS e Gac-Rsm direta ou indiretamente. Neste trabalho, mostramos que KerV exerce um efeito negativo na regulação dos operons phz1 e phz2, responsáveis pela síntese de piocianina, alterando a expressão desses genes. KerV exerce também um efeito positivo na expressão da proteína RsmA, responsável pela repressão de diversos genes alvos, onde RsmA se liga ao sítio de ligação ao ribossomo no mRNA, impedindo a tradução. Ensaios de gel shift mostraram que a ligação direta de RsmA na sequência líder de phzA1 e phzA2 ocorre, elucidando a maneira pela qual KerV está envolvido na regulação da expressão dos operons phz em P. aeruginosa PA14. Mostramos também que phz2 é ativo e contribui para a síntese de piocianina, pois na ausência de phz1, os níveis do pigmento são maiores do que aqueles detectados em PA14. Isso sugere uma maior expressão de phz2 e uma regulação diferencial dos operons de acordo com as condições ambientais como possível estratégia para manter os níveis desse composto. Uma evidência dessa regulação diferencial é vista no mutante lasR. Na fase inicial de crescimento, esse mutante não produz piocianina, porém quando exposto a tempos mais longos de cultivo, a produção de piocianina é maior quando comparada a PA14. Isso é reflexo da ativação da expressão de phz1 no mutante lasR em fase estacionária tardia, enquanto phz2 permanece não expresso. Isso indica que phz2 é dependente de LasR, ainda que indiretamente. Já phz1, embora tenha sua expressão influenciada por LasR no estágio inicial de crescimento, na fase estacionária é regulado por outros fatores independentes de las. / Pseudomonas aeruginosa is a gammaproteobacterium that colonizes several environments and infects phylogenetically distinct hosts. It behaves as an opportunistic pathogen in humans, often related to infection in immunocompromised individuals and cystic fibrosis patients. An important mechanism for P. aeruginosa versatility is the quorum sensing (QS) network, that allows bacteria to link gene expression to population density and environmental traits. Several additional regulators are interconnected with QS, as the regulatory mRNA binding protein RsmA and the non-coding small RNAs RsmZ and RsmY. Futhermore, key factors for pathogenicity are QS-regulated. In P. aeruginosa PA14, an important pathogenicity-related factor is the KerV protein, described for the first time here as involved in QS. D12 strain, that harbor a deletion in the kerV gene, shows alterations in QS-regulated phenotypes, such as high production of pyocyanin, a compound that contributes to virulence and persistence of P. aeruginosa infections. As the production of pyocyanin is easily detected and all mechanisms involved in its synthesis regulation are not fully described, the expression of genes responsible for production of this pigment is a good reporter to investigate KerV involvement in the QS network. Additionally, D12 also shows lower levels of rhamnolipids, another QS-regulated trait. Taken together, these phenotypes resemble the effects of a rsmA mutation, suggesting KerV involvement with QS and Gac-Rsm systems. In this work, we propose that KerV exerts a negative effect in the regulation of phz1 and phz2 operons, responsible for pyocyanin synthesis, by alterating the expression of these genes. KerV also has a positive effect on rsmA expression, responsible for the repression of several genes by blocking the ribosome binding site preventing the translation. Gel shift assays showed that RsmA binds directly in the leader sequence of phzA1 and phzA2, elucidating the manner in which KerV is involved in the regulation of phz operons expression in P. aeruginosa PA14. We also demonstrate that phz2 is actively expressed and contributes to pyocyanin production in PA14, since in the phz1 mutant the levels of pyocyanin are even higher than in the wild type strain. This suggests a phz2 higher expression and a differential regulation of phz operons according to environmental changes as a mechanism to maintain the levels of pyocyanin synthesis. An evidence for this regulation is the synthesis of pyocyanin by the lasR mutant, which does not make pyocyanin at early growth stages. However, at late stationary phase, pyocyanin production is even higher than in the wild-type strain, reflecting the LasR-independent regulation of phz1 expression, while phz2 operon remains silent.
133

Interação entre Methylobacterium extorquens e cana-de-açúcar (Saccharum sp.) / Interaction between Methylobacterium extorquens and sugarcane (Saccharum sp.)

Silva, Michele de Cássia Pereira e 04 April 2008 (has links)
As plantas quando colonizadas produzem diversas enzimas de defesa que podem impedir o estabelecimento de microrganismos. Esta condição adversa na planta hospedeira gera uma resposta do microrganismo, a qual está associada à síntese de proteínas e outras moléculas que atuam na sua interação com a planta e alteram a comunidade microbiana associada. Todos os organismos respondem a essa condição, estabelecendo biofilmes, ou sintetizando um grupo de moléculas e proteínas que os protegem de danos e facilita a recuperação. Estas são chamadas proteínas de choque térmico (HSPs), as quais não foram ainda estudadas na interação Methylobacterium - planta. As bactérias do gênero Methylobacterium são metilotróficas facultativas da classe Alfa-proteobactéria, encontradas em relações epifíticas e endofíticas com diferentes espécies vegetais. Assim, o presente trabalho teve como objetivos avaliar o efeito da deficiência da produção de biofilme e de Acil-Homoserina-Lactonas (AHLs), e do estresse térmico de M. extorquens na colonização da planta hospedeira (Saccharum sp.). Para isso, foram usadas linhagens defectivas para produção de biofilme e AHLs, juntamente com a linhagem selvagem submetida ou não ao estresse térmico. Os resultados obtidos mostram a complexidade dos mecanismos envolvidos na produção de biofilme e moléculas AHLs. O estresse térmico não afetou a colonização das raízes nem de colmos após 5 dias de inóculo, porém causou uma diminuição da colonizacão do colmo após 15 dias. A mutação para produção de AHL não causou nenhuma diferença significativa na colonização da planta hospedeira, no entanto o mutante para biofilme apresentou uma diminuição significativa da colonização tanto de raízes quanto de colmos, mostrando a grande importância da formação de biofilme na colonização da planta hospedeira. Entretanto, quando esta linhagem foi coinoculada com uma linhagem transformada (ARGFP) este resultado não foi observado. Os demais tratamentos após co-inoculação com a linhagem ARGFP apresentaram o mesmo padrão de colonização. O estudo proteômico de M. extorquens detectou um grande número de proteínas induzidas ou suprimidas nos tratamentos avaliados que podem estar associadas às alterações no padrão de interação desta bactéria com a planta hospedeira. A identificação dessas proteínas auxiliará a compreensão e o maior entendimento dos fatores envolvidos na interação bactéria-planta. / Plants produce a variety of defense enzymes when colonized that can impair the microorganisms\' establishment. This adverse condition in the host plant lead to a response from the microorganism, which is associated with the synthesis of a set of proteins and other molecules that affect the interaction with the host and shift the bacterial community associated. All organisms respond to this condition by establishing biofilms, or synthesizing a group of proteins and molecules that protect them from injuries and help them recover from damages. They are called heat shock proteins (HSPs), which is still not studied in Methylobacterium-plant interaction. The methylotrophic bacteria of the genus Methylobacterium are found in epiphytic and endophytic association with different plant species. So, in this present work the effect of a deficiency in biofilm and acyl-homoserine-lactones (AHLs) production and the effect of heat shock of M. extorquens on the host colonization (Saccharum sp.) was assessed. Defective strains for biofilm and AHLs production were used. Also the wild type AR 1.6/2 and this strain submitted to heat shock was evaluated. The results demonstrated that the mechanisms associated to biofilm and AHLs production are very complex. The heat stress has no effect on roots or stems colonization after 5 days of the inoculum, but was associated to reduction of bacterial density in stems after 15 days. The strain defective for AHL production showed similar colonization profile with wild type strain, while the biofilm mutant colonized the host plant in low density, suggesting the role of this process in plant colonization. Likewise, coinoculation of this strain with ARGFP target strain, which is AHL producer, the low density of this biofilm mutant was observed. The other treatments after coinoculation with ARGFP strain showed similar result when inoculated alone. A proteomic study of the strains showed that synthesis of many proteins were induced or suppressed in evaluated treatments, which proteins could be associated to shift in the bacteria-plant interaction. The identification of these proteins will contribute to a better understanding of the factors related to bacteria-plant interaction.
134

Indole-3-Acetic Acid as a Quorum-sensing Molecule in Saccharomyces cerevisiae

Hunter, Ally 21 August 2007 (has links)
"Fungal infections have large implications in agriculture and medicine, and there are few interventions available in the form of antifungal agents due to their toxicity to the host. Saccharomyces cerevisiae is an excellent model for pathogenic fungi because it is a well-studied, tractable organism and shares some traits with pathogenic fungi. Like most pathogenic fungi, S. cerevisiae is dimorphic and transitions from the benign yeast form to a filamentous form in which it produces psuedohyphae. Finding novel routes of suppressing dimorphic transition in a model like S. cerevisiae could lead to the discovery of new antifungal agents. Recently, quorum-sensing mechanisms have been under investigation as new avenues for microbial control. Quorum sensing is a signaling phenomenon that is well described in bacteria. It is the regulation of gene expression in response to cell density via the accumulation of small signaling molecules in the immediate environment. Indole-3-acetic acid (IAA) demonstrates some of the criteria for being a quorum-sensing molecule in S. cerevisiae. The purpose of this thesis was to further explore IAA as a quorum-sensing molecule in S. cerevisiae by demonstrating IAA production by the organism in culture. Radio-labeled tryptophan incorporation experiments followed by Thin Layer Chromatograph (TLC) analysis demonstrated that IAA is produced in culture by S. cerevisiae. A screen of a commercially available gene deletion library using the radio-labeled trypophan incorporation assay identified genes implicated in the IAA biosynthetic pathway. Some of these genes are homologous to those in an IAA pathway in the fungus Ustilago maydis. Further investigation of deletion strains of these candidate genes shows that Ald2 and Ald3, two aldehyde dehydrogenases, are involved in IAA production. The double mutant, ald2∆ald3∆, makes less IAA than wild type and is unable to demonstrate haploid invasive growth. This supports the idea that IAA biosynthesis in S. cerevisiae is necessary for morphological transition and that IAA could serve as a quorum-sensing molecule in S. cerevisiae with dimorphic transition as the quorum-sensing phenotype."
135

Structure et fonction de deux proteines senseur du gaba chez le phytopathogene agrobacterium tumefaciens / Structure and function of two GABA-binding proteins of the plant pathogen Agrobacterium tumefaciens

Planamente, Sara 01 December 2011 (has links)
L’acide γ-aminobutyrique (GABA) est synthétisé par la plante en réponse à des stress abiotiques et biotiques dont l’infection par le pathogène bactérien A. tumefaciens. Des travaux antérieurs ont montré que le GABA induit, chez A. tumefaciens C58, l’expression d’une lactonase BlcC (=AttM) qui inactive ses propres signaux quorum-sensing (QS), donc module le transfert horizontal du plasmide Ti. La protéine périplasmique de liaison (Periplasmic Binding Protein, PBP) Atu2422 et le transporteur ABC Bra sont respectivement impliqués dans la perception et le transport du GABA. L’importation du GABA est nécessaire à l’induction de l’expression de BlcC, donc à la dégradation des signaux QS. Les caractéristiques structurales des récepteurs/senseurs du GABA ne sont connus ni chez les bactéries, ni chez les eucaryotes.Ce travail de doctorat a permis de définir la structure et la fonction de deux senseurs du GABA, les PBPs Atu2422 et Atu4243 d’A. tumefaciens C58.La structure cristalline d’Atu2422 a été résolue en présence de GABA ou d’acides aminés antagonistes de la liaison au GABA comme la proline et l’alanine. L'analyse structurale du site de fixation du ligand d’Atu2422 a permis d’identifier deux résidus clés, Phe77 et Tyr275, respectivement impliqués dans la sélectivité du ligand et la liaison du GABA. L’analyse phénotypique de mutants ponctuels a révélé le rôle crucial de ces deux résidus aminés dans l’interaction entre A. tumefaciens C58 et deux plantes hôtes, tomate et tabac. De plus, ces travaux ont défini les caractéristiques moléculaires d’une sous-famille de PBPs présentes chez différentes protéobacteries interagissant avec des hôtes eucaryotes et capables de fixer le GABA et des acides aminés compétiteurs comme la proline ou l’alanine.Ce travail a également révélé une deuxième PBP (appelée GABA2) impliquée dans la perception et l’importation du GABA chez A. tumefaciens. Cette PBP a été identifiée grâce au séquençage du génome et l’analyse du transcriptome de mutants spontanés, issus d’un mutant-KO atu2422 d’A. tumefaciens C58, mais devenus capables de transporter le GABA. La construction d’un mutant défectif pour la PBP GABA2 a permis d’évaluer son rôle dans la signalisation GABA et l’interaction A. tumefaciens-plante hôte. La structure cristalline de cette PBP en présence de GABA a permis d’identifier les résidus clés impliqués dans la fixation du GABA dont le rôle a été validé par l’analyse de mutations ponctuelles. Enfin, une analyse phylogénétique des orthologues de GABA2 a révélé leur présence au sein de nombreuses protéobactéries pathogènes et symbiotiques interagissant avec les plantes. L’ensemble de ces travaux aboutit à la proposition de deux modèles de référence quant aux mécanismes moléculaires associés à la perception du GABA, médiateur de communications inter-cellulaires et inter-organismes. Ce travail illustre l’association des approches de biologie structurale et de génétique pour la compréhension des interactions plantes-microorganismes. / Γ-aminobutyric acid (GABA) is synthesized by plants in response to abiotic and biotic stresses, including infection with A. tumefaciens. Previous works have revealed that GABA induces the expression of the A. tumefaciens BlcC (=AttM) lactonase, which cleaves quorum-sensing (QS) signals, thus modulates QS-regulated functions such as horizontal transfer of the plasmid Ti. Periplasmic binding protein (PBP) Atu2422 and ABC transporter Bra of A. tumefaciens are involved in GABA transport from plant to A. tumefaciens. The structural characteristics of the receptors/sensors of GABA are still unknown in bacteria or eukaryotes.I have studied two GABA-binding PBPs of A. tumefaciens C58, Atu2422 and Atu4243 by a combination of structural, genetic and functional approaches.The crystal structure of Atu2422 was solved in the presence of GABA and competitive amino acids, such as proline and alanine. Structural analysis of the ligand binding site revealed two key residues, Phe77 and Tyr275, which are involved in the ligand selectivity and GABA binding, respectively. Analysis of two constructed point-mutants confirmed the critical role of these two residues in the interaction between A. tumefaciens C58 and two host plants, tomato and tobacco plants. Using characteristics of the GABA-binding site, a subfamily of GABA-PBPs was identified in Proteobacteria of which most of them interact with eukaryotic hosts.This work also revealed a second PBP (GABA2) involved in the GABA uptake in A. tumefaciens. This PBP was identified by whole-genome sequencing and transcriptomic analysis of two spontaneous mutants, which derived from the atu2422 mutant. A mutant GABA2 was constructed to validate GABA2 involvement in the transport of GABA, degradation of QS signal, conjugal transfer of the plasmid Ti, and aggressiveness of A. tumefaciens. X-ray structure of GABA-liganded PBP GABA2 revealed key-residues required for GABA-binding. Their role in the GABA uptake has been confirmed by analysis of point mutations. A phylogenetic approach showed that all GABA2-related proteins exhibiting these key-residues were clustered in the same PBPs subfamily.This study has contributed to a better understanding of the A. tumefaciens-plant host interaction, and has permitted to determine two GABA binding modes for PBPs.
136

Vibrio parahaemolyticus responds to growth on a surface by initiating a program of gene control that is regulated by calcium, iron, and quorum sensing

Gode, Cindy Jean 01 May 2011 (has links)
The gram-negative marine bacterium Vibrio parahaemolyticus is a pathogen and a common worldwide cause of seafood-associated gastroenteritis. When grown on a surface, V. parahaemolyticus undergoes a dramatic differentiation to an elongated, highly flagellated swarmer cell from the short rod typical of swimming cells. Swarming motility is a complex form of adaptation to growth on a surface, and we developed a set of microarray experiments to examine the global gene expression changes that occur upon differentiation to the swarmer cell. We hypothesized that growth on a surface would elicit a specific response involving genes for motility and surface colonization and not the broad changes in physiology suggested by others to be co-regulated with swarming motility. By taking advantage of the two known signals required for swarmer cell induction (inhibiting polar flagellar rotation and limiting iron), the swarming response was artificially induced in liquid and used to define the set of genes associated with surface sensing by transcriptome analysis. This approach avoided the confounding physiological differences between growth in liquid and growth on a surface. Fifteen microarrays performed with different strains and growth conditions were used to define a concise set of about 70 genes that comprise the core set of surface-induced genes. This set includes genes encoding the surface motility system lateral flagella and virulence factors including a type three secretion system (T3SS1). I showed a biological consequence of the increased expression of T3SS1 genes, as surface-induced cells were more toxic in a tissue culture infection than either liquid-grown or surface-grown non-swarming mutants. I explored the role of calcium signaling in regulating the surface sensing network, as calcium seemed a pertinent signal to a marine organism and low calcium is a known inducing signal for T3SS in other organisms. Calcium was shown to enhance swarming motility and lateral flagellar gene expression. Microarrays were used to analyze the transcriptome response to growth with EGTA (a cation chelator commonly used to generate low calcium) or calcium. Surprisingly, both low and high calcium induced T3SS1 gene expression. The EGTA effect was determined to be the result of iron limitation, which was thus shown to be a new inducing signal for T3SS1. I overexpressed the master transcriptional regulator of the T3SS system, encoded by exsA, to define the entire set of T3SS1-associated genes. I found that ExsA was also a new regulator of the surface sensing regulon, which was repressed when exsA was overexpressed. Microarray analysis showed that calcium is a global regulator, controlling transcription of about 50 genes under the conditions tested. I characterized a new calcium-regulated transcription factor that we named CalR, and showed that CalR repressed swarming motility and T3SS1 gene expression. The transcription factor OpaR was previously known to repress swarming genes and control colony opacity. It is homologous to the output regulators of the quorum sensing pathway in other Vibrio species. I used microarray analysis and mutant strains to explore the functionality of the quorum sensing cascade in V. parahaemolyticus and define the OpaR regulon during growth on a surface. I showed that the quorum sensing regulator LuxO when active silences opaR as it does in other Vibrios, using a translational reporter fusion in opaR. I used microarray analysis to show that 323 genes are induced or repressed by OpaR. The surface-sensing regulon is repressed by OpaR. Many genes encoding proteins involved in virulence, signal transduction, and modulation of the signaling molecule cyclic dimeric GMP are regulated by OpaR. The quorum sensing controlled network of gene expression in V. parahaemolyticus is quite distinct from other Vibrios, with respect to both the specific nature as well as the direction of regulation of genes controlled by OpaR.
137

Investigating the role of black carbon in S. pneumoniae quorum sensing

Morrissey, Charlotte 01 January 2019 (has links)
Bacteria secrete and sense extracellular signals from neighboring members of a colony in a phenomenon called quorum sensing. These signals vary from species to species but allow for changes in the behavior of a colony based on changes to cell density, environment, or nutrient supply. Of particular interest to human health is the quorum sensing system of Streptococcus pneumoniae as this pathogen accounts for around one million infection-related deaths per year and is difficult to combat largely due to its ability to form biofilms. These polysaccharide coverings protect entire bacterial colonies from antimicrobial agents as well as allow them to adhere well to the nasopharynx passages of organisms, making them hard to remove. To gain a better understanding of quorum sensing in S. pneumoniae, we propose experiments to study its biofilm formation and its interactions with black carbon, a biochar shown previously to interact with the quorum sensing systems of related bacteria species. We hypothesize that inhalation of black carbon will aggravate a S. pneumoniae infection by promoting biofilm-forming quorum sensing systems making it easier for this bacteria to adhere to and remain on mammal lungs. We propose to first explore the competency and biofilm quorum sensing systems in S. pneumoniae to identify any shared signals between the two using RT-PCR and FITC-Dextran experiments. Further experiments will analyze black carbon particles’ effects on bacterial colonies grown on plates and present on the lung linings of mammals.
138

Regulation of starvation and nonculturability in the marine pathogen, Vibrio vulnificus

McDougald, S. Diane, School of Microbiology & Immunology, UNSW January 2000 (has links)
Vibrio vulnificus is a model environmental organism exhibiting a classical starvation response during nutrient limitation as well as a non-culturable state when exposed to low temperatures. In addition to these classic global responses, this organism is an opportunistic pathogen that exhibits numerous virulence factors. This organism was chosen as the model organism for the identification of regulators of the viable but nonculturable response (VBNC) and the starvation-induced maintenance of culturability (SIMC) that occurs when cells are starved prior to low temperature incubation. In order to accomplish this, three indirect approaches were used; proteomics, investigation of intercellular signalling pathways and genetic analysis of regulators involved in these responses. Two-dimensional gel electrophoresis was used to identify proteins expressed under conditions that induced SIMC. It was determined that carbon and long-term phosphorus starvation were important in the SIMC response. V. vulnificus was shown to possess genes, luxS and smcR, that are homologues of genes involved in signalling system system 2 in Vibrio harveyi. Signal molecules were produced upon starvation and the entry to stationary phase in V. vulnificus. Furthermore, a null mutation in smcR, a transcriptional regulator was shown to have pleiotropic effects in V. vulnificus, including up-regulation of numerous virulence factors and a defect in starvation survival and development of the SIMC response. We propose that V. vulnificus possesses a signalling system analogous to that of system 2 in V. harveyi, and that this system is involved in the regulation of stationary phase and starvation adaptation in this organism.
139

Novel antagonists of bacterial signaling pathways

Goh, Wai Kean, Chemistry, Faculty of Science, UNSW January 2008 (has links)
Traditional bacterial disease therapies utilize compounds that ultimately kill the target bacteria but it exerts a strong selective pressure on the bacteria to develop multi-drug resistance mutants. The increasing occurrence of resistance in common pathogens has highlighted the need to identify new anti-microbials that target the control of bacterial pathogenicity in a non-extermination manner to reduce the incidence of bacteria resistance. One new strategy exploits the discrete signaling molecules that regulate the various bacterial signaling pathways, which are responsible for the expression of pathogenicity traits. Halogenated furanones (fimbrolides) from the marine red alga, Delisea pulchra have been shown to interfere with the key signaling pathway present in Gram-negative bacteria by competitively displacing the cognate signaling molecule from the transcription protein. This project focused on the design and synthesis of 1,5-dihydropyrrol-2-ones, a new class of fimbrolide derivatives capable of displaying strong antagonistic properties of the fimbrolides. Primary synthetic methodologies examined include the halolactamization of allenamides and the direct lactone-lactam transformation. No doubt, both methodologies yielded the lactam ring, the former failed to introduce the crucial C-5 bromomethylene group essential for bioactivity. A facile high yielding two-step lactone-lactam transformation method was developed and using this method, a wide range of substituted 5-bromomethyl- and 5-dibromomethylene-1,5-dihydropyrrol-2-ones were synthesized. Furthermore, a new class of tricyclic crown-ether type compounds with no literature precedent were discovered. To vary the diversity of the compounds, a related class of compounds, 5,6-dihydroindol-2-ones, were examined. A general versatile method for the synthesis of 7-substituted 5,6-dihydroindol-2-ones was developed. The synthetic strategy proceeds via the established Suzuki-Miyaura cross-coupling reaction of halogenated dihydroindol-2-ones with arylboronic acids/esters. The Suzuki methodology was found to be reliable in furnishing a wide range of 7-substituted products in high yields. A preliminary molecular modeling approach was used to assist in the design of new anti-microbials via the ligand-docking analyses of the TraR and LasR protein. A positive correlation was observed between the docking scores and biological activity and the methodology was further developed into an initial screening tool to filter potential active and non-active compounds. The newly synthesized compounds were analysed for their efficacy in reducing the expression of the Green Fluorescent Protein (GFP) in the presence of natural AHL signaling molecules in an AHL-monitor strain, indicative of the inhibition of bacterial phenotype expression. The dihydropyrrol-2-one class of compounds showed significant biological activity and this highlighted their potential for further development.
140

Rôle du quorum-sensing et prévalence des bactériophages chez la bactérie phytostimulatrice Azospirillum

Boyer, Mickaël 16 July 2008 (has links) (PDF)
Le but de ce travail était d'identifier les fonctions régulées par quorum-sensing (QS) chez la bactérie phytostimulatrice Azospirillum. Les effets phytobénéfiques in vitro des souches B518 et TVV3 (isolées du riz) ne sont pas altérées par l'inactivation des molécules signal impliquées dans le QS. La combinaison d'une approche ciblée et d'une approche globale par protéomique montre que le QS régule des fonctions liées à l'adaptation à la plante, notamment à la colonisation racinaire chez B518. Chez TVV3, aucune fonction régulée par QS n'a pu être identifiée mais les gènes impliqués dans le QS sont localisés dans un environnement atypique, constitué de gènes prophagiques. La mise en évidence d'un prophage chez TVV3 a conduit à la caractérisation de phages tempérés chez dix autres souches et au séquençage du premier génome d'un bactériophage isolé d'Azospirillum. Ce travail montre que la régulation de type QS est souche spécifique et révèle la prévalence des phages chez Azospirillum.

Page generated in 0.0769 seconds