• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 44
  • 16
  • Tagged with
  • 168
  • 168
  • 85
  • 53
  • 46
  • 45
  • 35
  • 34
  • 31
  • 30
  • 24
  • 24
  • 22
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Apprentissage spatial de corrélations multimodales par des mécanismes d'inspiration corticale / Spatial learning of multimodal correlations in a cortically inspired way

Lefort, Mathieu 04 July 2012 (has links)
Cette thèse traite de la problématique de l'unification de différents flux d'informations modales qui peuvent provenir des senseurs d'un agent. Cette unification, inspirée des expériences psychologiques comme l'effet ventriloque, s'appuie sur la détection de corrélations, définies comme des motifs spatiauxqui apparaissent régulièrement dans les flux d'entrée. L'apprentissage de l'espace des corrélations du flux d'entrée échantillonne cet espace et généralise les échantillons appris. Cette thèse propose des principes fonctionnels pour le traitement multimodal de l'information qui ont aboutit à l'architectureconnexionniste, générique, modulaire et cortico-inspirée SOMMA (Self-Organizing Maps for Multimodal Association). Dans ce modèle, le traitement de chaque modalité s'effectue au sein d'une carte corticale. L'unification multimodale de l'information est obtenue par la mise en relation réciproque de ces cartes.L'échantillonnage et la généralisation des corrélations reposent sur une auto-organisation contrainte des cartes. Ce modèle est caractérisé par un apprentissage progressif de ces propriétés fonctionnelles : les propriétés monomodales amorcent l'émergence des propriétés multimodales et, dans le même temps, l'apprentissagede certaines corrélations par chaque carte est un préalable à l'auto-organisation de ces cartes. Par ailleurs, l'utilisation d'une architecture connexionniste et d'un apprentissage continu et non supervisé fournit au modèle des propriétés de robustesse et d'adaptabilité qui sont généralement absentes des approches informatiques classiques. / This thesis focuses on unifying multiple modal data flows that may be provided by sensors of an agent. This unification, inspired by psychological experiments like the ventriloquist effect, is based on detecting correlations which are defined as temporally recurrent spatial patterns that appear in the input flows. Learning of the input flow correlations space consists on sampling this space and generalizing theselearned samples. This thesis proposed some functional paradigms for multimodal data processing, leading to the connectionist, generic, modular and cortically inspired architecture SOMMA (Self-Organizing Maps for Multimodal Association). In this model, each modal stimulus is processed in a cortical map. Interconnectionof these maps provides an unifying multimodal data processing. Sampling and generalization of correlations are based on the constrained self-organization of each map. The model is characterised by a gradual emergence of these functional properties : monomodal properties lead to the emergence of multimodal ones and learning of correlations in each map precedes self-organization of these maps.Furthermore, the use of a connectionist architecture and of on-line and unsupervised learning provides plasticity and robustness properties to the data processing in SOMMA. Classical artificial intelligence models usually miss such properties.
12

Capteurs MEMS : optimisation des méthodes de traitement capteurs, de navigation et d'hybridation / MEMS sensors : preprocessing and GNSS/MEMS navigation optimization

Boer, Jean-Rémi de 12 January 2010 (has links)
Les travaux menés durant cette thèse ont pour objectif d’améliorer les performances des systèmes hybrides GNSS/MEMS. Ils se décomposent en deux parties distinctes : d’une part, le développement d’un ensemble de traitement capteurs cherchant à améliorer la mesure elle-même et d’autre part, l’optimisation des algorithmes d’hybridation pour les capteurs MEMS de Thales. Le traitement capteur consiste en l’estimation de l’accélération vraie (resp. la vitesse angulaire vraie) à partir de la sortie du capteur accélérométrique (resp. gyrométrique). Ce traitement a été réalisé en deux sous-étapes : 1) La calibration qui consiste en l’identification du système non-linéaire connaissant ses entrées et ses sorties. Les relations entrant en jeu dans le modèle étant linéaires vis-à-vis des paramètres, on peut alors résoudre cette partie du problème par l’estimateur des moindres carrés (après extension du vecteur comprenant les entrées afin qu’il comporte les non linéarités). 2) L’inversion du modèle qui a pour but d’estimer les entrées du modèle connaissant ses sorties et l’estimation des paramètres effectuée durant l’étape de calibration. Après formalisation de ce problème sous forme d’un modèle dynamique, la résolution se fera à l’aide d’algorithme type filtre de Kalman ou filtre particulaire. Les algorithmes d’hybridation ont pour but de localiser un mobile dans l’espace connaissant l’information issue des MEMS ainsi que celle apportée par le GPS. Cette partie peut également se décomposer en deux sous-problèmes : 1) Lorsque que les signaux GPS sont disponibles (cas nominal), le but est d’améliorer les méthodes de navigation hybride GPS/INS existantes (EKF, UKF, PF, …). Dans notre cas, la réflexion a portée sur une modélisation à l’ordre 2 des biais des capteurs MEMS et sur la fermeture de la boucle de navigation (correction de la centrale inertielle à l’aide des erreurs issues du filtre d’hybridation). 2) Dans des scénarii défavorables (multitrajet et masquage des signaux GPS), la qualité des capteurs MEMS ne permet pas d’obtenir des résultats de navigation satisfaisants. Un algorithme basé sur un réseau de neurones a donc été développé. Durant les phases où le GPS est disponible, cet algorithme permet d’apprendre l’erreur commise par la centrale inertielle en mode survie par rapport au résultat de navigation hybride. Le réseau de neurones ainsi appris fournira alors cet élément de correction en cas de perte de l’information GPS. Ces différentes méthodes ont permis d’accroître la précision de la navigation GNSS/MEMS aussi bien dans le cas nominal que lors de pertes du signal GPS / The goal of this thesis is to improve accuracy of GNSS/MEMS integrated navigation system. Two main parts can be distinguished in this thesis: first, sensor processing can be achieved to improve measurement accuracy and then, navigation algorithm can be optimized for the specific case of MEMS sensors. Sensor processing is the estimation of real acceleration (resp. real angular rate) from the one measured by accelerometer (resp. gyrometer). This processing have been realized in two steps: 1) Calibration: identification of the non-linear system describing sensors (resolved by Least Square method). 2) Model inversion: estimation of the input of the non-linear system, i.e. acceleration and/or angular rate (resolved by Kalman filtering). Navigation algorithm have then to locate an object in space from both GNSS and MEMS data. This part have been also realized in two steps: 1) If GNSS signals are available, the goal is to improve the existing GNSS/INS navigation schemes (2nd-order bias modeling of MEMS sensors). 2) If GNSS are not available (e.g. multipath or outage), a Neural Network based algorithm have been developped, which learn the error made by the inertial platform during the unavailability of GNSS signals. These different methods have allowed to improve accuracy of GNSS/MEMS inetgrated navigation system both for nominal case and degraded case
13

Développement d'un modèle statistique neuronal pour la description fine de la pollution atmosphérique par le dioxyde d'azote : application à la région parisienne

Rude, Julien 23 January 2008 (has links)
Les oxydes d'azote (NOx) sont les indicateurs principaux de la pollution atmosphérique produite par les véhicules. La concentration de NO2, polluant réglementé pour ses effets sur la santé, dépasse en 2006, à Paris et en proche banlieue, les niveaux réglementaires pour l'ensemble des stations qui le mesurent, et en particulier à proximité du trafic. Ainsi, les six stations franciliennes de proximité au trafic automobile, dépassent largement l'objectif de qualité (jusqu'à 2.5 fois) et la valeur limite (jusqu'à deux fois). L'objectif de ma thèse visait à mettre au point un modèle qtatistique de détermination des concentrations "respirables" par la population, pour le NO2 en milieu urbain. Compte tenu de la nécessité d'une base de données statistiquement représentative, le modèle a été développé sur la région parisienne. Nous avons sélectionné les variables nécessaires à la description du système et à la définition de la fonction de régression neuronale sur la base de notre connaissance du phénomène étudié. Les paramètres de la régression ont été optimisés au cours d'une phase d'apprentissage à partir d'observations relevées à 5 stations de "trafic" et 5 stations "urbaines". Les variables que nous avons retenues sont (i) des concentrations de fond en NO2 estimées par un modèle de chimie transport à l'échelle régionale, (ii) des paramètres d'émissions locales pour les sources urbaines, (iii) des paramètres de la topographie urbaine qui participent à la dispersion en milieu urbain et enfin (iv) des paramètres météorologiques. Le modèle construit (nommé PAP) est un modèle hybride prenant en compte les sorties d'un modèle régional déterministe CHIMERE, pour quantifier le niveau de fonds urbain, et intégre une fonction statistique de réduction d'échelle pour estimer les champs de concentrations au niveau "respirable" de la rue / Résumé anglais manquant
14

Réseau de neurones dynamique perceptif - Application à la reconnaissance de structures logiques de documents

Rangoni, Yves 09 November 2007 (has links) (PDF)
L'extraction de structures logiques de documents est un défi du fait de leur complexité inhérente et du fossé existant entre les observations extraites de l'image et leur interprétation logique. La majorité des approches proposées par la littérature sont dirigées par le modèle et ne proposent pas de solution générique pour des documents complexes et bruités. Il n'y a pas de modélisation ni d'explication sur les liens permettant de mettre en relation les blocs physiques et les étiquettes logiques correspondantes. L'objectif de la thèse est de développer une méthode hybride, à la fois dirigée par les données et par le modèle appris, capable d'apprentissage et de simuler la perception humaine pour effectuer la tâche de reconnaissance logique. Nous avons proposé le Réseau de Neurones Dynamique Perceptif qui permet de s'affranchir des principales limitations rencontrées dans les précédentes approches. Quatre points principaux ont été développés : - utilisation d'une architecture neuronale basée sur une représentation locale permettant d'intégrer de la connaissance à l'intérieur du réseau. La décomposition de l'interprétation est dépliée à travers les couches du réseau et un apprentissage a été proposé pour déterminer l'intensité des liaisons ; - des cycles perceptifs, composés de processus ascendants et descendants, accomplissent la reconnaissance. Le réseau est capable de générer des hypothèses, de les valider et de détecter les formes ambigües. Un retour de contexte est utilisé pour corriger les entrées et améliorer la reconnaissance ; - un partitionnement de l'espace d'entrée accélérant la reconnaissance. Des sous-ensembles de variables sont créés automatiquement pour alimenter progressivement le réseau afin d'adapter la quantité de travail à fournir en fonction de la complexité de la forme à reconnaître ; - l'intégration de la composante temporelle dans le réseau permettant l'intégration de l'information de correction pendant l'apprentissage afin de réaliser une reconnaissance plus adéquate. L'utilisation d'un réseau à décalage temporel permet de tenir compte de la variation des entrées après chaque cycle perceptif tout en ayant un fonctionnement très proche de la version statique.
15

L’estimation de distribution à l'aide d'un autoencodeur

Germain, Mathieu January 2015 (has links)
Ce mémoire introduit MADE, un nouveau modèle génératif spécifiquement développé pour l’estimation de distribution de probabilité pour données binaires. Ce modèle se base sur le simple autoencodeur et le modifie de telle sorte que sa sortie puisse être considérée comme des probabilités conditionnelles. Il a été testé sur une multitude d’ensembles de données et atteint des performances comparables à l’état de l’art, tout en étant plus rapide. Pour faciliter la description de ce modèle, plusieurs concepts de base de l’apprentissage automatique seront décrits ainsi que d’autres modèles d’estimation de distribution. Comme son nom l’indique, l’estimation de distribution est simplement la tâche d’estimer une distribution statistique à l’aide d’exemples tirés de cette dernière. Bien que certains considèrent ce problème comme étant le Saint Graal de l’apprentissage automatique, il a longtemps été négligé par le domaine puisqu’il était considéré trop difficile. Une raison pour laquelle cette tâche est tenue en si haute estime est qu’une fois la distribution des données connue, elle peut être utilisée pour réaliser la plupart des autres tâches de l’apprentissage automatique, de la classification en passant par la régression jusqu’à la génération. L’information est divisée en trois chapitres principaux. Le premier donne un survol des connaissances requises pour comprendre le nouveau modèle. Le deuxième présente les précurseurs qui ont tenu le titre de l’état de l’art et finalement le troisième explique en détail le modèle proposé.
16

Récupération en temps réel de coïncidences diffuses triples dans un scanner TEP à l'aide d'un réseau de neurones artificiels

Geoffroy, Charles January 2013 (has links)
Le projet de recherche s’inscrit dans un contexte d'imagerie moléculaire, où la modalité d'imagerie d'intérêt est la tomographie d'émission par positrons (TEP) appliquée en recherche sur les petits animaux. Afin de permettre l’observation de détails infimes, les plus récents développements sur ce genre de scanner ont constamment amélioré leur résolution spatiale, sans toutefois obtenir les mêmes progrès en terme de sensibilité. Parmi les méthodes étudiées afin de combler cette lacune, la récupération de coïncidences triples à l’aide d'un réseau de neurones artificiels semble être une technique viable. En effet, malgré une dégradation du contraste, celle-ci permet d'améliorer substantiellement la sensibilité de l’image. Cette technique n'est cependant pas prête à être intégrée aux protocoles de recherche, car son application est pour l’instant limitée à un traitement hors ligne des données d'acquisition d'un scanner. En conséquence, la faisabilité d'une telle approche en temps réel n'est donc pas garantie, car le flux de coïncidences d'un scanner est très important et ses ressources de calculs sont limitées. Dans l’intention d'inclure ce gain en sensibilité pendant une acquisition où le traitement est effectué en temps réel, ce projet de recherche propose une implémentation d'un réseau de neurones artificiels au sein d'une matrice de porte programmable (FPGA) pouvant récupérer en temps réel les coïncidences diffuses triples du scanner LabPET, version 4 cm. La capacité de traitement obtenue est 1 087 000 coïncidences triples par seconde en utilisant 23.1% des ressources d'unités logiques d'un FPGA de modèle XC2VP50. Comparativement à un programme équivalent à haute précision sur ordinateur personnel, l’analyse de validité prend la même décision dans 99.9% des cas et la même ligne de réponse est choisie dans 97.9% des cas. Intégrées à l’image, les coïncidences triples permettent une augmentation de sensibilité jusqu’à 39.7%, valeur qui est en deçà [de] celle obtenue des recherches antérieures, mais expliquée par des conditions d'acquisition différente. Au niveau de la qualité de l’image, la dégradation du contraste de 16,1% obtenu est similaire à celle observée antérieurement. En référence à ces résultats, les ressources limitées d'un scanner de tomographie d'émission par positrons sont avérées suffisantes pour permettre l’implémentation d'un réseau de neurones artificiels devant classifier en temps réel les coïncidences triples du scanner. En terme de contributions, l’implémentation en temps réel réalisée pour ce projet confirme la faisabilité de la technique et apporte une nouvelle approche concrète pour améliorer la sensibilité. Dans une autre mesure, la réussite du projet de recherche contribue à faire connaître la technique des réseaux de neurones artificiels dans le domaine de la tomographie d’émission par positrons. En effet, cette approche est pertinente à considérer en guise d'alternative aux solutions traditionnelles. Par exemple, les réseaux de neurones artificiels pourraient effectuer une évaluation correcte du phénomène des coïncidences fortuites.
17

Réalisation d’un système de substitution sensorielle de la vision vers l’audition

Lescal, Damien January 2014 (has links)
Ce projet de recherche a été mené dans le cadre du groupe de recherche NECOTIS (Neurosciences Computationnelles et Traitement Intelligent du Signal). Ce groupe de recherche agit principalement dans le domaine du traitement de l’image et de l’audio grâce à des méthodes de traitement de signal bio-inspirées. Différentes applications ont été développées en reconnaissance de la parole, dans la séparation de sources sonores ou encore en reconnaissance d’images. Bien qu’ils existent depuis plus de quarante ans, les systèmes d’aide aux personnes atteintes de déficiences visuelles, que cela soit des prothèses visuelles (invasif) ou des système de substitution sensorielle (non invasif), n’ont pas percé dans le milieu du handicap. Il serait difficile d’imputer cet état de fait à des limitations technologiques : depuis les premières approches, les prothèses visuelles ou les systèmes de substitution sensorielle n’ont cessé de se perfectionner et de se diversifier. Toutefois, si la question de savoir comment transmettre le signal est bien documentée, la question de savoir quel signal transmettre a été plus rarement abordée. Différents systèmes ont été développés mais le plus impressionnant est le récit des utilisateurs de tels systèmes. Ainsi, il fait plaisir de lire que l’artiste Neil Harbisson, qui ne voit aucune couleur, explique comment une caméra attachée à se tête lui permet d’entendre des couleurs et ainsi de pouvoir peindre [Montandon, 2004]. Un autre exemple tout aussi impressionnant, la scientifique Wanda Díaz-Merced, qui travaille pour xSonify, explique comment elle analyse différentes données en les encodant de façon sonore [Feder, 2012]. C’est dans ce cadre que ce projet de substitution sensorielle de la vision vers l’audition a été développé. En effet, nous avons utilisé le traitement de signal bio-inspiré afin d’extraire différentes caractéristiques représentatives de la vision. De plus, nous avons essayé de générer un son agréable à l’oreille et représentatif de l’environnement dans lequel évolue la personne. Ce projet a donc davantage été axé sur la nature du signal transmis à la personne ayant des déficiences visuelles.
18

Apprentissage à base de gradient pour l'extraction de caractéristiques dans les signaux sonores complexes

Lacoste, Alexandre January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
19

Exploration des réseaux de neurones à base d'autoencodeur dans le cadre de la modélisation des données textuelles

Lauly, Stanislas January 2016 (has links)
Depuis le milieu des années 2000, une nouvelle approche en apprentissage automatique, l'apprentissage de réseaux profonds (deep learning), gagne en popularité. En effet, cette approche a démontré son efficacité pour résoudre divers problèmes en améliorant les résultats obtenus par d'autres techniques qui étaient considérées alors comme étant l'état de l'art. C'est le cas pour le domaine de la reconnaissance d'objets ainsi que pour la reconnaissance de la parole. Sachant cela, l’utilisation des réseaux profonds dans le domaine du Traitement Automatique du Langage Naturel (TALN, Natural Language Processing) est donc une étape logique à suivre. Cette thèse explore différentes structures de réseaux de neurones dans le but de modéliser le texte écrit, se concentrant sur des modèles simples, puissants et rapides à entraîner.
20

Modèles Pareto hybrides pour distributions asymétriques et à queues lourdes

Carreau, Julie January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Page generated in 0.0842 seconds