Spelling suggestions: "subject:"réseau dde communication"" "subject:"réseau dee communication""
1 |
Diagnostic en réseau de mobiles communicants, stratégies de répartition de diagnostic en fonction de contraintes de l'application / Diagnostic of mobiles networks, strategies for the diagnostic distribution as a function of the application constraintsSassi, Insaf 27 November 2017 (has links)
Dans la robotique mobile, le réseau de communication est un composant important du système global pour que le système accomplisse sa mission. Dans un tel type de système, appelé un système commandé en réseau sans fil (SCR sans fil ou WNCS), l’intégration du réseau sans fil dans la boucle de commande introduit des problèmes qui ont un impact sur la performance et la stabilité i.e, sur la qualité de commande (QoC). Cette QoC dépend alors de la qualité de service (QoS) et la performance du système va donc dépendre des paramètres de la QoS. C’est ainsi que l’étude de l’influence des défauts du réseau sans fil sur la QoC est cruciale. Le WNCS est un système temps réel qui a besoin d’un certain niveau de QoS pour une bonne performance. Cependant, la nature probabiliste du protocole de communication CSMA/CA utilisé dans la plupart des technologies sans fil ne garantit pas les contraintes temps réel. Il faut alors une méthode probabiliste pour analyser et définir les exigences de l’application en termes de QoS, c’est-à-dire en termes de délai, de gigue, de débit, et de perte de paquets. Une première contribution de cette thèse consiste à étudier les performances et la fiabilité d’un réseau sans fil IEEE 802.11 pour des WNCSs qui partagent le même réseau et le même serveur de commandes en développant un modèle stochastique. Ce modèle est une chaîne de Markov qui modélise la méthode d’accès au canal de communication. Ce modèle a servi pour définir les paramètres de la QoS qui peuvent garantir une bonne QoC. Nous appliquons notre approche à un robot mobile commandé par une station distante. Le robot mobile a pour mission d’atteindre une cible en évitant les obstacles. Pour garantir l’accomplissement de cette mission, une méthode de diagnostic probabiliste est primordiale puisque le comportement du système n’est pas déterministe. La deuxième contribution a été d’établir la méthode probabiliste qui sert à surveiller le bon déroulement de la mission et l’état du robot. C’est un réseau bayésien (RB) modulaire qui modélise les relations de dépendance cause-à-effet entre les défaillances qui ont un impact sur la QoC du système. La dégradation de la QoC peut être due soit à un problème lié à l’état interne du robot, soit à un problème lié à la QoS, soit à un problème lié au contrôleur lui-même. Les résultats du modèle markovien sont utilisés dans le RB modulaire pour définir l'espace d'état de ses variables (étude qualitative) et pour définir les probabilités conditionnelles de l'état de la QoS (étude quantitative). Le RB permet d’éviter la dégradation de la QoC en prenant la bonne décision qui assure la continuité de la mission. En effet, dans une approche de co-design, quand le RB détecte une dégradation de la QoC due à une mauvaise QoS, la station envoie un ordre au robot pour qu'il change son mode de fonctionnement ou qu'il commute sur un autre contrôleur débarqué. Notre hypothèse est que l’architecture de diagnostic est différente en fonction des modes de fonctionnement : nous optons pour un RB plus global et partagé lorsque le robot est connecté à la station et pour RB interne au robot lorsqu’il est autonome. La commutation d’un mode de fonctionnement débarqué à un mode embarqué implique la mise à jour du RB. Un autre apport de cette thèse est la définition d’une stratégie de commutation entre les modes de diagnostic : commutation d’un RB distribué à un RB monolithique embarqué quand le réseau de communication ne fait plus partie de l'architecture du système et vice-versa. Les résultats d’inférence et de scénario de diagnostic ont montré la pertinence de l’utilisation des RBs distribués modulaires. Ils ont aussi montré la capacité du RB développé à détecter la dégradation de la QoC et de la QoS et à superviser l’état du robot. L’aspect modulaire du RB a permis de faciliter la reconfiguration de l’outil de diagnostic selon l’architecture de commande ou de communication adaptée (RB distribué ou RB monolithique embarqué). / In mobile robotics systems, the communication network is an important component of the overall system, it enables the system to accomplish its mission. Such a system is called Wireless Networked Control System WNCS where the integration of the wireless network into the control loop introduces problems that impact its performance and stability i.e, its quality of control (QoC). This QoC depends on the quality of service (QoS) therefore, the performance of the system depends on the parameters of the QoS. The study of the influence of wireless network defects on the QoC is crucial. WNCS is considered as a real-time system that requires a certain level of QoS for good performance. However, the probabilistic behavior of the CSMA / CA communication protocol used in most wireless technologies does not guarantee real-time constraints. A probabilistic method is then needed to analyze and define the application requirements in terms of QoS: delay, jitter, rate, packet loss. A first contribution of this thesis is to study the performance and reliability of an IEEE 802.11 wireless network for WNCSs that share the same network and the same control server by developing a stochastic model. This model is a Markov chain that models the access procedure to the communication channel. This model is used to define the QoS parameters that can guarantee the good QoC. In this thesis, we apply our approach to a mobile robot controlled by a remote station. The mobile robot aims to reach a target by avoiding obstacles, a classic example of mobile robotics applications. To ensure that its mission is accomplished, a probabilistic diagnostic method is essential because the system behavior is not deterministic. The second contribution of this thesis is to establish the probabilistic method used to monitor the robot mission and state. It is a modular Bayesian network BN that models cause-and-effect dependency relationships between failures that have an impact on the system QoC. The QoC degradation may be due either to a problem related to the internal state of the robot, a QoS problem or a controller problem. The results of the Markov model analysis are used in the modular BN to define its variables states (qualitative study) and to define the conditional probabilities of the QoS (quantitative study). It is an approach that permits to avoid the QoC degradation by making the right decision that ensures the continuity of the mission. In a co-design approach, when the BN detects a degradation of the QoC due to a bad QoS, the station sends an order to the robot to change its operation mode or to switch to another distant controller. Our hypothesis is that the diagnostic architecture depends on the operation mode. A distributed BN is used when the robot is connected to the station and a monolithic embedded BN when it is autonomous. Switching from a distributed controller to an on-board one involves updating the developed BN. Another contribution of this thesis consists in defining a switching strategy between the diagnostic modes: switching from a distributed BN to an on-board monolithic BN when the communication network takes no longer part of the system architecture and vice versa -versa. The inference and diagnostic scenarii results show the relevance of using distributed modular BNs. They also prove the ability of the developed BN to detect the degradation of QoC and QoS and to supervise the state of the robot. The modular structure of the BN facilitates the reconfiguration of the diagnostic policy according to the adapted control and communication architecture (distributed BN or on-board monolithic RB).
|
2 |
Amélioration de la mesure de la Bande Passante dans un réseau basé sur IPAit Ali, Ahmed 27 November 2007 (has links) (PDF)
Les travaux menés dans cette thèse s'intéressent particulièrement à la mesure de la bande passante disponible qui est un paramètre très important pour le bon fonctionnement de plusieurs applications réseaux et dont la détermination avec précision reste jusqu'à aujourd'hui un défi à relever. Ces travaux visent donc à améliorer les techniques de mesure de ce paramètre en proposant un nouveau modèle déterministe basé sur la technique de la paire de paquets. Ce dernier est implémenté dans un nouvel outil de mesure appelé IGMPS. L'évaluation de performances de cet outil ont montré que ce dernier permet de mesurer la bande passante disponible avec une très grande précision. Par ailleurs, une analyse de sensibilité et un calcul des incertitudes sur les modèles étudiés ont montré que les erreurs dues à l'estampillage des paquets sondes au niveau de l'émetteur et du récepteur sont principalement à l'origine de l'imprécision des mesures fournies par les différents outils de mesure de la bande passante isponible.
|
3 |
La sécurisation des infrastructures critiques : recherche d'une méthodologie d'identification des vulnérabilités et modélisation des interdépendancesRozel, Benoît 08 July 2009 (has links) (PDF)
Les travaux de cette thèse portent sur la sécurisation des infrastructures critiques. Celles-ci sont constituées de l'ensemble des grands réseaux indispensables au bon fonctionnement d'une société. Ce travail s'attache particulièrement aux réseaux électriques et de télécommunications associés. Les interdépendances entre ces derniers amènent à l'apparition de nouvelles vulnérabilités. Pour progresser dans la compréhension de ces vulnérabilités afin de les réduire, deux approches complémentaires ont été explorées. La première est la création d'un outil de simulation comportementale pour systèmes multiinfrastructures. La seconde est la proposition d'une modélisation multi-infrastructures inspirée par la théorie des réseaux complexes. Grâce à cette modélisation, diverses études, en particulier sur l'évaluation de l'influence du réseau de communication sur l'impact des pannes généralisées dans les réseaux électriques ont été réalisées.
|
4 |
Evaluation analytique du temps de réponse des systèmes de commande en réseau en utilisant l'algèbre (max,+)Addad, Boussad 01 July 2011 (has links) (PDF)
Les systèmes de commande en réseau (SCR) sont de plus en plus répandus dans le milieu industriel. Ils procurent en effet de nombreux avantages en termes de coût, de flexibilité, de maintenance, etc. Cependant,l'introduction d'un réseau, qui par nature est composé de ressources partagées, impacte considérablement les performances temporelles des systèmes de commande. Un signal de commande par exemple n'arrive à destination qu'après un certain délai. Pour s'assurer que ce délai soit inférieur à un certain seuil de sécurité ou du respect d'autres contraintes temps réels de ces systèmes, une évaluation au préalable, avant la mise en service d'un SCR, s'avère donc nécessaire. Dans nos travaux de recherche, nous nous intéressons à la réactivité des SCR client/serveur et évaluons leur temps de réponse.Notre contribution dans ces travaux est d'adopter une approche analytique à base de l'algèbre (Max,+) et remédier aux problèmes des méthodes existantes comme l'explosion combinatoire de la vérification formelle ou de la non exhaustivité des approches par simulation. Après modélisation des SCR client/serveur à l'aide de Graphe d'Evénements Temporisés puis représentation de leurs dynamiques à l'aides d'équations (Max,+) linéaires, nous obtenons des formules de calcul direct du temps de réponse. Plus précisément, nous adoptons une analyse déterministe pour calculer les bornes, minimale et maximale, du temps de réponse puis une analyse stochastique pour calculer la fonction de sa distribution. De plus, nous prenons en compte dans nos travaux tous les délais élémentaires qui composent le temps de réponse, y compris les délais de bout-en-bout, dus à la traversée du seul réseau de communication. Ce dernier étant naturellement composé de ressources partagées, rendant l'utilisation des modèles (Max,+) classiques impossibles, nous introduisons une nouvelle approche de modélisation à base du formalisme (Max,+) mais prenant en compte le concept de conflit ou ressource partagée.L'exemple d'un réseau de type Ethernet est considéré pour évaluer ces délais de bout-en-bout. Par ailleurs, cette nouvelle méthode (Max,+) est assez générique et reste applicable à de nombreux systèmes impliquant des ressources partagées, au delà des seuls réseaux de communication. Enfin, pour vérifier la validité des résultats obtenus dans nos travaux, notamment la formule de la borne maximale du temps de réponse, une compagne de mesures expérimentales sont menées sur une plateforme dédiée. Différentes configurations et conditions de trafic dans un réseau Ethernet sont considérées.
|
5 |
Vulnérabilité, Interdépendance et Analyse des Risques des Postes Sources et des Modes d'Exploitation décentralises des Réseaux ElectriquesSanchez Torrès, José Libardo 23 October 2013 (has links) (PDF)
Au vu de l'utilisation croissante des technologies de l'information et de la communication dans les réseaux électriques, il est indispensable d'étudier l'étroite liaison entre ces infrastructures et d'avoir une vision intégrée du système couplé. Cette thèse porte ainsi sur la modélisation des systèmes multi-infrastructures. Cela inclut les interdépendances et les trajectoires de défaillances de type modes communs, aggravations et cascades. Il est en effet nécessaire d'identifier les points de faiblesse qui peuvent déclencher une ou de multiples défaillance(s), se succéder en cascade au travers de ces infrastructures liées et ainsi entrainer des défaillances inattendues et de plus en plus graves dans des autres infrastructures. Dans cette optique, différents modèles basés sur la théorie des Réseaux Complexes sont développés afin d'identifier les composants les plus importantes, et pourtant critiques, dans le système interconnecté. Un des principaux verrous scientifiques levé dans cette thèse est relatif au dé-veloppement d'un modèle mathématique " unifié " afin de représenter les comportements des multiples infrastructures non-homogènes qui ont des interdépendances asymétriques.
|
6 |
Vulnérabilité, interdépendance et analyse des risques des postes sources et des modes d’exploitation décentralisés des réseaux électriques / Vulnerability, interdependencies and risk analysis of coupled infrastructures : power distribution network and ICTSanchez Torres, José Libardo 23 October 2013 (has links)
Au vu de l’utilisation croissante des technologies de l’information et de la communication dans les réseaux électriques, il est indispensable d’étudier l’étroite liaison entre ces infrastructures et d’avoir une vision intégrée du système couplé. Cette thèse porte ainsi sur la modélisation des systèmes multi-infrastructures. Cela inclut les interdépendances et les trajectoires de défaillances de type modes communs, aggravations et cascades. Il est en effet nécessaire d’identifier les points de faiblesse qui peuvent déclencher une ou de multiples défaillance(s), se succéder en cascade au travers de ces infrastructures liées et ainsi entrainer des défaillances inattendues et de plus en plus graves dans des autres infrastructures. Dans cette optique, différents modèles basés sur la théorie des Réseaux Complexes sont développés afin d’identifier les composants les plus importantes, et pourtant critiques, dans le système interconnecté. Un des principaux verrous scientifiques levé dans cette thèse est relatif au développement d'un modèle mathématique « unifié » afin de représenter les comportements des multiples infrastructures non-homogènes qui ont des interdépendances asymétriques. / In view of the increasing use of Information and Communication Technol-ogies in power systems, it is essential to study the interdependencies between these coupled heterogeneous systems. This thesis focuses on the modeling of multi- infrastructure systems. This includes interdependencies and the three major failures families: common mode, escalat-ing and cascading. It is indeed necessary to identify the weaknesses that can trigger one or multiple failure(s) and cascade through these interdependent infrastructures, causing unex-pected and increasingly more serious failures to other infrastructures. In this context, different approaches, based on the theory of Complex Networks, are developed to identify the most critical components in the coupled heterogeneous system. One of the major scientific barriers addressed in this thesis is the development of a unified mathematical model to represent the behavior.
|
7 |
Sur la conception sûre des systèmes contrôlés en réseau. / On the safe design of networked control systems.Naoui, Adel 19 December 2016 (has links)
De nos jours, les systèmes de contrôle-commande temps-réel distribués à travers un réseau de communication sont de plus en plus utilisés dans les secteurs de l’automobile, de l’avionique, de la robotique mobile, de la télécommunication et plus généralement de la conduite de procédés industriels. En comparaison avec les systèmes de contrôle point-à-point conventionnel, un système contrôlé en réseau (SCR) permet non seulement de réduire le câblage et les coûts d’installation, mais offre aussi plus de flexibilité pour faire évoluer une installation existante et favorise les actions de diagnostic et de maintenance. Comme le réseau est partagé par plusieurs boucles de contrôle et par d’autres applications, la conséquence est que le trafic de communication est difficilement maîtrisable, ce qui peut conduire à des pertes de messages et engendre des délais aléatoires. Par ailleurs, le diagnostic et la tolérance aux défauts sont des enjeux importants pour les SCR, particulièrement dans le cas ou le domaine d’utilisation exige une grande sécurité. Il est évident que la théorie et l’application des approches classiques de diagnostic et de tolérance aux défauts doivent être révisées lorsqu’il s’agit de SCR.L’étude des SCR, reposant sur des compétences en automatique, en informatique et en réseau propose naturellement des solutions propres à chaque domaine. La problématique du diagnostic des SCR consiste non seulement à détecter et localiser des défauts affectant l’ensemble du système mais aussi à distinguer, les perturbations et défaillances affectant le réseau de communication de celles du système contrôle. L’objectif de nos travaux de thèse est de proposer des modèles intégrés permettant de représenter le comportement des SCR et de contribuer à leurs diagnostics. / Real-time control systems distributed across communication networks are increasingly used in automotive, avionics, mobile robotics, and telecommunications and more generally in the conduct of industrial processes. Compared with point- to-point conventional control systems, a networked control system (NCS) can not only reduce wiring and installation costs, but also offer more flexibility to expand an existing facility and promote actions of diagnosis and maintenance. As the network is shared by multiple control loops and other applications, the result is that the communication traffic is difficult to control, which can lead to loss of messages and generate random delays.Diagnosis and fault tolerance are important issues for NCS, especially in the case where the area of application requires security. It’s obvious that the theory and application of conventional approaches to diagnosis and fault tolerance need to be revised when it comes to NCS.The study of the NCS, based on automatic skills, computer science and network competences naturally provides adequate solutions to each area. The problem of NCS diagnosis is the one hand to detect and locate faults affecting the whole system and on the other hand to distinguish, disturbances and malfunctions affecting the communication network of the control system.Our work aims is to propose integrated models to represent the behavior of NCS and contribute to its diagnosis.
|
8 |
Evaluation analytique du temps de réponse des systèmes de commande en réseau en utilisant l’algèbre (max,+) / Networked automation systems response time evaluation using (Max,+) algebraAddad, Boussad 01 July 2011 (has links)
Les systèmes de commande en réseau (SCR) sont de plus en plus répandus dans le milieu industriel. Ils procurent en effet de nombreux avantages en termes de coût, de flexibilité, de maintenance, etc. Cependant,l’introduction d’un réseau, qui par nature est composé de ressources partagées, impacte considérablement les performances temporelles des systèmes de commande. Un signal de commande par exemple n’arrive à destination qu’après un certain délai. Pour s’assurer que ce délai soit inférieur à un certain seuil de sécurité ou du respect d’autres contraintes temps réels de ces systèmes, une évaluation au préalable, avant la mise en service d’un SCR, s’avère donc nécessaire. Dans nos travaux de recherche, nous nous intéressons à la réactivité des SCR client/serveur et évaluons leur temps de réponse.Notre contribution dans ces travaux est d’adopter une approche analytique à base de l’algèbre (Max,+) et remédier aux problèmes des méthodes existantes comme l’explosion combinatoire de la vérification formelle ou de la non exhaustivité des approches par simulation. Après modélisation des SCR client/serveur à l’aide de Graphe d’Evénements Temporisés puis représentation de leurs dynamiques à l’aides d’équations (Max,+) linéaires, nous obtenons des formules de calcul direct du temps de réponse. Plus précisément, nous adoptons une analyse déterministe pour calculer les bornes, minimale et maximale, du temps de réponse puis une analyse stochastique pour calculer la fonction de sa distribution. De plus, nous prenons en compte dans nos travaux tous les délais élémentaires qui composent le temps de réponse, y compris les délais de bout-en-bout, dus à la traversée du seul réseau de communication. Ce dernier étant naturellement composé de ressources partagées, rendant l’utilisation des modèles (Max,+) classiques impossibles, nous introduisons une nouvelle approche de modélisation à base du formalisme (Max,+) mais prenant en compte le concept de conflit ou ressource partagée.L’exemple d’un réseau de type Ethernet est considéré pour évaluer ces délais de bout-en-bout. Par ailleurs, cette nouvelle méthode (Max,+) est assez générique et reste applicable à de nombreux systèmes impliquant des ressources partagées, au delà des seuls réseaux de communication. Enfin, pour vérifier la validité des résultats obtenus dans nos travaux, notamment la formule de la borne maximale du temps de réponse, une compagne de mesures expérimentales sont menées sur une plateforme dédiée. Différentes configurations et conditions de trafic dans un réseau Ethernet sont considérées. / Networked automation systems (NAS) are more and more used in industry, given the several advantages they provide like flexibility, low cost, ease of maintenance, etc. However, the use of a communication network in SCR means in essence sharing some resources and therefore strikingly impacts their time performances. For instance, a control signal does get to its destination (actuator) only after a non zero delay. So, to guarantee that such a delay is shorter than a given threshold or other time constraints well respected, an a priori evaluation is necessary before operating the SCR. In our research activities, we are interested in client/server SCR reactivity and the evaluation of their response time.Our contribution in this investigation is the introduction of a (Max,+) Algebra-based analytic approach to solve some problems, faced in the existing methods like state explosion of model checking or the non exhaustivity of simulation. So, after getting Timed Event Graphs based models of the SCR and their linear state (Max,+) representation, we obtain formulae that enables to calculate straightforwardly the SCR response times. More precisely, we obtain formulae of the bounds of response time by adopting a deterministic analysis and other formulae to calculate the probability density of response time by considering a stochastic analysis. Moreover, in our investigation we take into account every single elementary delay involved in the response time, including the end-to-end delays, due exclusively to crossing the communication network. This latter being however constituted of shared resources, making by the way the use of TEG and (Max,+) Algebra impossible, we introduce a novel approach to model the communication network. This approach brings to life a new class of Petri nets, called Conflicting Timed Event Graphs (CTEG), which enables us to solve the problem of the shared resources. We also manage to represent the CTEG dynamics using recurrent (Max,+) equations and therefore calculate the end to-end delays. An Ethernet-based network is studied as an example to apply this novel approach. Note by the way that the field of application of this approach borders largely communication networks and is quite possible when dealing with other systems.Finally, to validate the different results of our research activities and the related hypotheses, especially the maximal bound of response time formula, we carry out lots of experimental measurements on a lab facility. We compare the measures to the formula predictions and check their agreement under different conditions.
|
Page generated in 0.1556 seconds