11 |
A Blind Space-Time Decorrelating RAKE Receiver in a DS-CDMA System in Multipath ChannelsXU, BIN 31 March 2004 (has links)
No description available.
|
12 |
Performance of coherent and noncoherent RAKE receivers with convolutional coding ricean fading and pulse-noise interferenceKowalske, Kyle E. 06 1900 (has links)
Approved for public release, distribution is unlimited / The performance of coherent and noncoherent RAKE receivers over a fading channel in the presence of pulse-noise interference and additive white Gaussian noise is analyzed. Coherent RAKE receivers require a pilot tone for coherent demodulation. Using a first order phase-lock-loop to recover a pilot tone with additive white Gaussian noise causes phase distortions at the phase-lock-loop output, which produce an irreducible phase noise error floor for soft decision Viterbi decoding. Both coherent and noncoherent RAKE receivers optimized for additive white Gaussian noise perform poorly when pulse-noise interference is present. When soft decision convolutional coding is considered, the performance degrades as the duty cycle of the pulse-noise interference signal decreases. The reverse is true for hard decision Viterbi decoding, since fewer bits experience interference and bit errors with high noise variance cannot dominate the decision statistics. Soft decision RAKE receiver optimized for pulse-noise interference and additive white Gaussian noise performed the best for both the coherent and noncoherent RAKE receivers. This receiver scales the received signal by the inverse of the variance on a bit-by-bit basis to minimize the effect of pulse-noise interference. The efficacy is demonstrated by analytical results, which reveal that this receiver reduces the probability of bit error down to the irreducible phase noise error floor when pulse-noise interference is present. This demonstrates how important it is to design the receiver for the intended operational environment. / Civilian, Department of Defense
|
13 |
Space-time Processsing for the Wideband-CDMA SystemZahid, Kazi 28 March 2001 (has links)
Deployment of antenna arrays is a very promising solution to reduce the Multiple Access Interference (MAI) from high data rate users in the Wideband Code Division Multiple Access (W-CDMA) system. Combining the antenna array with a RAKE receiver, both of which exploits multipath diversity, can significantly improve the system performance. In this research, we investigate the performance of these beamformer-RAKE receivers, also known as two-dimensional (2-D) RAKE receiver, for the reverse link of the W-CDMA system. We consider three different Pilot Symbol Assisted (PSA) beamforming techniques, Direct Matrix Inversion (DMI), Least-Mean Square (LMS) and Recursive Least Square (RLS) adaptive algorithms. Two different Geometrically Based Single Bounce (GBSB) statistical channel models are considered, one, which is more suitable for array processing, and the other is conductive to RAKE combining. The performances of the 2-D RAKE receivers are evaluated in these two channel models as a function of the number of antenna elements and RAKE fingers. It is shown that, in both the cases, the 2-D RAKE receiver outperforms the conventional RAKE receiver and the conventional beamformer by a significant margin. Also, the output SINR expression of a 2-D RAKE receiver with the general optimum beamformer is derived. / Master of Science
|
14 |
On Modulation and Detection Schemes for Low-Complexity Impulse Radio UWB CommunicationsKhan, Muhammad Gufran January 2011 (has links)
Due to wealth of advantages offered by short range ultra wideband (UWB) technology, such as capacity improvement, fading reduction and localization, it has gathered a considerable attention. Distinct UWB qualities also pose many system design challenges like difficulties in using digital processing, complex channel estimation and different propagation characteristics. The main objective of the thesis is to develop and evaluate efficient modulation and detection schemes for impulse radio (IR) UWB with a focus on wireless sensor networks characterized by low cost and low power consumption. The content of the thesis comprises of five parts. In Part I, a coherent RAKE and non-coherent energy detector (ED) and transmitted reference (TR) receivers are examined and their bit-error-rate (BER) performance is evaluated using channels measured in an industrial environment. In specific, selective RAKE (SRake) and partial RAKE (PRake) for both maximal ratio combining (MRC) and equal gain combining (EGC) are compared. Based on the analysis and simulation results, it is concluded the SRake with EGC is to be preferred, whereas the best complexity/performance trade-off is provided by the ED based receivers. Part II presents several signaling and detection schemes; the proposed schemes are recursive TR (R-TR), dual-doublet TR (DDTR), doublet-shift TR (DSTR) and binary pulse position modulation (BPPM)/DSTR. Analysis and simulations verify that the proposed schemes may be preferred over the conventional TR in terms of BER, energy efficiency and/or implementation complexity. Part III presents a non-coherent kurtosis detector (KD) and a fourth-order detector (FD), which can discriminate between Gaussian noise and non-Gaussian IR-UWB signals by directly estimating the fourth-order moment of the received signal. Empirical evaluations and simulations using channel measurements conducted in a corridor, an office and a laboratory environment verify that performance of the proposed FD receiver is slightly better than the ED in the low SNR region and its performance improves as the SNR increases. Part IV presents a robust weighted ED (WED) in which the weighting coefficients are estimated adaptively based on the received stochastic data. Simulation results confirm that performance of the proposed weight estimation method is close to that of a data-aided (DA) scheme. Finally, Part V focuses on a multi-user scenario and develops a weighted code-multiplexed TR (WCM-TR) receiver employing the robust adaptive weight estimation scheme. Secondly, a BPPM/CM-TR UWB system is presented to mitigate inter-frame interference (IFI) and multi-user interference (MUI) from other asynchronous users. The BPPM/CM-TR system is 3 dB energy-efficient and improves the BER performance by mitigating MUI/IFI in the high SNR region, while for the low SNR case and single-user scenario, a dual-mode BPPM/CM-TR system is suggested
|
15 |
Approche multicouches pour la reconfigurabilité de systèmes de communications de 3ème générationKrikidis, Ioannis 11 1900 (has links) (PDF)
Un circuit de télécommunication est reconfigurable s'il est capable de changer de fonction en temps réel, comme par exemple le passage d'un standard de communication à un autre, ou l'optimisation des performances suite à une modification contextuelle. La reconfigurabilité nécessite de mener conjointement une étude au niveau algorithmique et au niveau architectural de façon à respecter les contraintes de flexibilité, rapidité et consommation. Dans cette thèse la reconfigurabilité a été étudiée dans le cadre du standard WCDMA de façon à optimiser conjointement la performance et la consommation de puissance lors d'un changement du canal de propagation ou des paramètres de communication. Une des contributions de cette thèse est une nouvelle méthode de reconfigurabilité appelée "Approche itérative". Cette approche essaye de tirer parti des algorithmes ayant des opérateurs similaires et se prêtant à la sérialisation des calculs. Les systèmes de communications et de traitement du signal utilisent de nombreux algorithmes itératifs propices à l'utilisation de cette méthode. L'approche itérative permet de disposer de grain de calcul fin qui joue en faveur de la diminution de la complexité et de la facilité à mettre en commun des ressources entre différents algorithmes. Un autre atout est d'autoriser l'ajustement de la qualité de l'algorithme en jouant sur le nombre d'itérations. La consommation dynamique d'une structure sérielle de ce type est généralement supérieure à la structure factorisation. En revanche la consommation statique qui devient non négligeable dans les technologies CMOS <0.1m est nettement inférieure du fait de la taille réduite du grain de calcul. Pour certaines fonctions, tous les opérateurs peuvent ne pas être utilisés, mais la faible granularité des opérateurs minimise l'utilisation sous optimale du matériel. Le nombre d'itérations peut aussi être limité par le temps imparti pour le traitement. Mais en considérant qu'un itération ne peut durer qu'un cycle d'horloge avec une architecture pipeline, le rapport entre la fréquence d'horloge (>>200Mmots/s) et les débits binaires (quelque Mbits/s à quelques 10Mb/s) offre un nombre d'itération suffisant pour de nombreuses fonctions. Les exemples décrits dans cette thèse illustrent l'intérêt de cette méthode. Plus précisément, nous nous sommes intéressés aux algorithmes de réception d'un système DS-CDMA et à leur implémentation matérielle. La similarité de calcul entre trois fonctions de base qui sont: la démodulation en râteau (RAKE), l'estimation du canal, et l'annulation d'interférence (IC); ainsi que leur nature itérative, a débouché sur quelques algorithmes de réception chargés d'adapter le comportement aux conditions environnementales. Ces algorithmes optimisent la performance du système et minimisent la surface de matériel. Cette approche est donc particulièrement efficace pour l'implémentation de terminaux qui ont des contraintes de puissance et de surface très critiques.
|
16 |
Pre-equalization for pre-Rake MISO DS-UWB systemsTorabi, Elham 05 1900 (has links)
In recent years, ultra-wideband (UWB) communications has gained tremendous
popularity in both research community and industry. The large bandwidth
of UWB systems raises new wireless channel effects and consequently
unique advantages as well as challenges to be dealt with, compared to conventional
wireless systems. One of these advantages is the ability to resolve
dense multipath components and use Rake combining at the receiver in order
to significantly reduce the negative effects of fading. However, implementing
a Rake receiver with a sufficiently large number of fingers to make use
of this advantage is an evident challenge for most UWB devices with limited
signal processing capabilities. A possible approach to overcome this problem
is to move computational complexity from the receiver to the more powerful
transmitter, which is the main focus of the present work.
In this thesis, we propose two novel pre-equalization schemes for multiple-
input single-output (MISO) direct-sequence ultra-wideband (DS-UWB) systems
with pre-Rake combining and symbol-by-symbol detection. The first
pre-equalization filter (PEF) scheme employs one PEF per transmit antenna,
whereas in the second, simplified PEF (S-PEF) scheme all transmit antennas
share the same PEF. For both schemes the optimum finite impulse response
(FIR) and infinite impulse response (IIR) PEFs are calculated based on the
minimum mean squared error (MMSE) criterion. We show that in contrast to
previously proposed schemes for DS-UWB, both our proposed PEF schemes
efficiently exploit the channel shortening properties of the pre-Rake filter.
In particular, our proposed PEF schemes operate at the symbol level. We also
show that under certain conditions the S-PEF scheme achieves the same performance
as the more complex PEF scheme. Finally, we demonstrate that a
single-input multiple-output (SIMO) DS-UWB system with post-Rake combining
and MMSE post-equalization is the dual system to the considered MISO
DS–UWB system with pre-Rake combining and MMSE pre-equalization. This
uplink-downlink duality can be exploited for efficient calculation of the PEFs
and for complexity reduction.
Our simulation results show that the proposed PEF schemes achieve significant
performance gains over pre-Rake combining without equalization even if only
short PEFs are employed, and this is the case even for long UWB channel
impulse responses.
|
17 |
Multiscale CLEAN Deconvolution for Resolving Multipath Components in SRake ReceiverWang, Chun-yu 31 August 2010 (has links)
Ultra-wideband systems can be used in indoor wireless personal area network (WPAN) or short-range wireless local area network (WLAN) transmission. Yet owing to the effects of indoor dense multipath, it will cause more power consumption. We usually use Rake receiver to improve system performance. However, we should do some compromise between system performance and the design complexity. Thus, the concept of Selective Rake can be used to substitute for the conventional Rake receiver. Selective Rake receiver uses fewer but more powerful paths instead of using all the paths to raise system performance. Hence, we have to precisely detect the multipath components for best performance. Earlier we use CLEAN algorithm to estimate the multipath components. The CLEAN algorithm can be used in selecting the paths with relatively high energy. But as the impact of frequency selective fading makes the transmitted signal distorted, the CLEAN algorithm no longer applies to this situation. Thus, we use Multiscale CLEAN algorithm instead. Multiscale CLEAN algorithm calculate the value of cross-correlation between the received signal and a set of waveforms, and then choose the higher one as the waveform transmitted. Besides, we use Maximal Ratio Combining to weigh the different paths to get the signal with more power. We represent the signal affected by frequency selective fading by using the second derivatives of Gaussian waveform function with different effective widths of pulse. The waveforms corresponding different effective widths have different spectra which represent the different effects of fading. It is seen that that the multiscale CLEAN has better performance than the CLEAN algorithm with more precise estimation of multipath components. In simulation result, we can figure out path searching using Multiscale CLEAN algorithm is more accurate than using CLEAN algorithm. Even the path with smaller energy gain, using multiscale CLEAN algorithm can search successfully, while CLEAN algorithm cannot do.
|
18 |
Performance Analysis of Improved Selective-Rake on Ultra-Wideband ChannelsWang, Yan-Lun 23 July 2004 (has links)
The Ultra-Wideband (UWB) communication technology has been extensively attended in recent years. In this thesis, we propose the improved selective-Rake receiver and analyze the performance on UWB channels. The UWB transmission channels are modeled with statistical methods and its fading characteristics are discussed. Different impulse radio properties for the UWB communication system are analyzed. The system performance and design complexity issues of selective-Rake receiver (SRake) are studied. Rake receiver has difficulties achieving desired system performance in the dense multipath environment. The main ideas of SRake receiver are to obtain the SNR level on known multipath channel and to determine the desired number of Rake fingers. Matched filters and maximum likelihood detectors are utilized in the implementation of the SRake to estimate the signal time delay. The CLEAN algorithm is then used in selecting the paths with relatively high energy. Furthermore, we also propose a noise cancellation scheme for performance improvement in the SRake receiver. In the noise cancellation scheme, the multiresolution property of wavelet transform is used for filtering the noise interference caused by the rapid fluctuation factor. In addition, a two-stage search is combined with the original CLEAN algorithm to increase the accuracy of path selection. From our simulation results on the UWB channels, the improved SRake receiver, with noise cancellation and two-stage search, indeed has high SRake output SNR and better path accuracy than the original SRake receiver.
|
19 |
Σχεδιασμός ψηφιακού υποσυστήματος δέκτη για συστήματα υπερευρείας ζώνηςΠαπαδόπουλος, Χαράλαμπος 28 September 2009 (has links)
Αντικείμενο αυτής της διπλωματικής εργασίας είναι ο σχεδιασμός και η υλοποιηση ενός ψηφιακού δέκτη τύπου Rake για ασύρματη λήψη UWB. / Subject of this diploma thesis is the design and implementation of a digital Rake receiver for an UWB transmission scheme.
|
20 |
Pre-equalization for pre-Rake MISO DS-UWB systemsTorabi, Elham 05 1900 (has links)
In recent years, ultra-wideband (UWB) communications has gained tremendous
popularity in both research community and industry. The large bandwidth
of UWB systems raises new wireless channel effects and consequently
unique advantages as well as challenges to be dealt with, compared to conventional
wireless systems. One of these advantages is the ability to resolve
dense multipath components and use Rake combining at the receiver in order
to significantly reduce the negative effects of fading. However, implementing
a Rake receiver with a sufficiently large number of fingers to make use
of this advantage is an evident challenge for most UWB devices with limited
signal processing capabilities. A possible approach to overcome this problem
is to move computational complexity from the receiver to the more powerful
transmitter, which is the main focus of the present work.
In this thesis, we propose two novel pre-equalization schemes for multiple-
input single-output (MISO) direct-sequence ultra-wideband (DS-UWB) systems
with pre-Rake combining and symbol-by-symbol detection. The first
pre-equalization filter (PEF) scheme employs one PEF per transmit antenna,
whereas in the second, simplified PEF (S-PEF) scheme all transmit antennas
share the same PEF. For both schemes the optimum finite impulse response
(FIR) and infinite impulse response (IIR) PEFs are calculated based on the
minimum mean squared error (MMSE) criterion. We show that in contrast to
previously proposed schemes for DS-UWB, both our proposed PEF schemes
efficiently exploit the channel shortening properties of the pre-Rake filter.
In particular, our proposed PEF schemes operate at the symbol level. We also
show that under certain conditions the S-PEF scheme achieves the same performance
as the more complex PEF scheme. Finally, we demonstrate that a
single-input multiple-output (SIMO) DS-UWB system with post-Rake combining
and MMSE post-equalization is the dual system to the considered MISO
DS–UWB system with pre-Rake combining and MMSE pre-equalization. This
uplink-downlink duality can be exploited for efficient calculation of the PEFs
and for complexity reduction.
Our simulation results show that the proposed PEF schemes achieve significant
performance gains over pre-Rake combining without equalization even if only
short PEFs are employed, and this is the case even for long UWB channel
impulse responses.
|
Page generated in 0.0414 seconds