421 |
Realization of source conditions for linear ill-posed problems by conditional stabilityHofmann, Bernd, Yamamoto, Masahiro 19 May 2008 (has links)
We prove some sufficient conditions for obtaining convergence rates in regularization
of linear ill-posed problems in a Hilbert space setting and show that these
conditions are directly related with the conditional stability in several concrete inverse
problems for partial differential equations.
|
422 |
Optimal rates for Lavrentiev regularization with adjoint source conditionsPlato, Robert, Mathé, Peter, Hofmann, Bernd January 2016 (has links)
There are various ways to regularize ill-posed operator equations in Hilbert space. If the underlying operator is accretive then Lavrentiev regularization (singular perturbation) is an immediate choice. The corresponding convergence rates for the regularization error depend on the given smoothness assumptions, and for general accretive operators these may be both with respect to the operator or its adjoint. Previous analysis revealed different convergence rates, and their optimality was unclear, specifically for adjoint source conditions. Based on the fundamental study by T. Kato, Fractional powers of dissipative operators. J. Math. Soc. Japan, 13(3):247--274, 1961, we establish power type convergence rates for this case. By measuring the optimality of such rates in terms on limit orders we exhibit optimality properties of the convergence rates, for general accretive operators under direct and adjoint source conditions, but also for the subclass of nonnegative selfadjoint operators.
|
423 |
Generalized Tikhonov regularization: Basic theory and comprehensive results on convergence ratesFlemming, Jens 27 October 2011 (has links)
The dissertation suggests a generalized version of Tikhonov regularization and analyzes its properties. The focus is on convergence rates theory and an extensive example for regularization with Poisson distributed data is given.
|
424 |
Regularization of an autoconvolution problem occurring in measurements of ultra-short laser pulsesGerth, Daniel 26 September 2011 (has links)
Introducing a new method for measureing ultra-short laser pulses, the research group "Solid State Light Sources" of the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Berlin, encountered a new type of autoconvolution problem. The so called SD-SPIDER method aims for the reconstruction of the real valued phase of a complex valued laser pulse from noisy measurements. The measurements are also complex valued and additionally influenced by a device-related kernel function. Although the autoconvolution equation has been examined intensively in the context of inverse problems, results for complex valued functions occurring as solutions and right-hand sides of the autoconvolution equation and for nontrivial kernels were missing. The thesis is a first step to bridge this gap. In the first chapter, the physical background is explained and especially the autoconvolution effect is pointed out. From this, the mathematical model is derived, leading to the final autoconvolution equation. Analytical results are given in the second chapter. It follows the numerical treatment of the problem in chapter three. A regularization approach is presented and tested with artificial data. In particular, a new parameter choice rule making use of a specific property of the SD-SPIDER method is proposed and numerically verified. / Bei der Entwicklung einer neuen Methode zur Messung ultra-kurzer Laserpulse stieß die Forschungsgruppe "Festkörper-Lichtquellen" des Max-Born-Institutes für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin, auf ein neuartiges Selbstfaltungsproblem. Die so genannte SD-SPIDER-Methode dient der Rekonstruktion der reellen Phase eines komplexwertigen Laserpulses mit Hilfe fehlerbehafteter Messungen. Die Messwerte sind ebenfalls komplexwertig und zusätzlich beeinflusst von einer durch das Messprinzip erzeugten Kernfunktion. Obwohl Selbstfaltungsgleichungen intensiv im Kontext Inverser Probleme untersucht wurden, fehlen Resultate für komplexwertige Lösungen und rechte Seiten ebenso wie für nichttriviale Kernfunktionen. Die Diplomarbeit stellt einen ersten Schritt dar, diese Lücke zu schließen. Im ersten Kapitel wird der physikalische Hintergrund erläutert und insbesondere der Selbstfaltungseffekt erklärt. Davon ausgehend wird das mathematische Modell aufgestellt. Kapitel zwei befasst sich mit der Analysis der Gleichung. Es folgt die numerische Behandlung des Problems in Kapitel drei. Eine Regularisierungsmethode wird vorgestellt und an künstlichen Daten getestet. Insbesondere wird eine neue Regel zur Wahl des Regularisierungsparameters vorgeschlagen und numerisch bestätigt, welche auf einer speziellen Eigenschaft des SD-SPIDER Verfahrens beruht.
|
425 |
Parameter choice in Banach space regularization under variational inequalitiesHofmann, Bernd, Mathé, Peter January 2012 (has links)
The authors study parameter choice strategies for Tikhonov regularization of nonlinear ill-posed problems in Banach spaces. The effectiveness of any parameter choice for obtaining convergence rates depend on the interplay of the solution smoothness and the nonlinearity structure, and it can be expressed concisely in terms of variational inequalities. Such inequalities are link conditions between the penalty term, the norm misfit and the corresponding error measure. The parameter choices under consideration include an a priori choice, the discrepancy principle as well as the Lepskii principle. For the convenience of the reader the authors review in an appendix a few instances where the validity of a variational inequality can be established.
|
426 |
Regularization properties of the discrepancy principle for Tikhonov regularization in Banach spaces: Regularization properties of the discrepancy principle for Tikhonov regularization in Banach spacesAnzengruber, Stephan W., Hofmann, Bernd, Mathé, Peter January 2012 (has links)
The stable solution of ill-posed non-linear operator equations in Banach space requires regularization. One important approach is based on Tikhonov regularization, in which case a one-parameter family of regularized solutions is obtained. It is crucial to choose the parameter appropriately. Here, a variant of the discrepancy principle is analyzed. In many cases such parameter choice exhibits the feature, called regularization property below, that the chosen parameter tends to zero as the noise tends to zero, but slower than the noise level. Here we shall show such regularization property under two natural assumptions. First, exact penalization must be excluded, and secondly, the discrepancy principle must stop after a finite number of iterations. We conclude this study with a discussion of some consequences for convergence rates obtained by the discrepancy principle under the validity of some kind of variational inequality, a recent tool for the analysis of inverse problems.
|
427 |
Regularizace založená na metodách Krylovových podprostorů / Regularization based on Krylov subspace iterationsKovtun, Viktor January 2013 (has links)
No description available.
|
428 |
Regularizační metody založené na metodách nejmenších čtverců / Regularizační metody založené na metodách nejmenších čtvercůMichenková, Marie January 2013 (has links)
Title: Regularization Techniques Based on the Least Squares Method Author: Marie Michenková Department: Department of Numerical Mathematics Supervisor: RNDr. Iveta Hnětynková, Ph.D. Abstract: In this thesis we consider a linear inverse problem Ax ≈ b, where A is a linear operator with smoothing property and b represents an observation vector polluted by unknown noise. It was shown in [Hnětynková, Plešinger, Strakoš, 2009] that high-frequency noise reveals during the Golub-Kahan iterative bidiagonalization in the left bidiagonalization vectors. We propose a method that identifies the iteration with maximal noise revealing and reduces a portion of high-frequency noise in the data by subtracting the corresponding (properly scaled) left bidiagonalization vector from b. This method is tested for different types of noise. Further, Hnětynková, Plešinger, and Strakoš provided an estimator of the noise level in the data. We propose a modification of this estimator based on the knowledge of the point of noise revealing. Keywords: ill-posed problems, regularization, Golub-Kahan iterative bidiagonalization, noise revealing, noise estimate, denoising 1
|
429 |
Regularization by White Noise for Stochastic Functional Differential EquationsBachmann, Stefan 13 December 2019 (has links)
No description available.
|
430 |
Quadratic Inverse Problems and Sparsity Promoting Regularization: Two subjects, some links between them, and an application in laser opticsFlemming, Jens 11 January 2018 (has links)
Ill-posed inverse problems with quadratic structure are introduced, studied and solved. As an example an inverse problem appearing in laser optics is solved numerically based on a new regularized inversion algorithm. In addition, the theory of sparsity promoting regularization is extended to situations in which sparsity cannot be expected and also to equations with non-injective operators.
|
Page generated in 0.0287 seconds