261 |
A comparison of taped versus live biofeedback assisted relaxation training employing audio or audio and video instruction presentationCraw, Michael Jay 01 January 1992 (has links)
No description available.
|
262 |
Relaxation training, flexibility training, and their relationship to running speeds at short distancesThompson, Robert Charles 01 January 1978 (has links)
The purpose of this investigation was to determine the relationship of relaxation training and flexibility training to running speeds of high intensity at three short distances for high school males. In addition to the main problem, the following sub-problems were established: (1) Was there a significant difference of effects between the relaxation training and the flexibility training on times at the three distances of 20, 50, and 100 yards? (2) Was the relationship of flexibility and relaxation to running speed the same as the distance increased? (3) Did a combination of flexibility and relaxation training produce different results then relaxation training of flexibility training alone?
|
263 |
Multimodální T2 kontrastní látky na bázi fluorescenčně značených magnetických jader spinelového typu pro zobrazování magnetickou rezonancí / Magnetic resonance imaging with multimodal T2 contrast agents based on fluorescence-labelled magnetic cores with the spinel structureKikerlová, Soňa January 2018 (has links)
This diploma thesis was focused on the preparation of magnetic and fluorescently labelled spinel type nanoparticles, specifically nanoparticles of zinc-doped cobalt ferrite intended for application in magnetic resonance imaging and fluorescence microscopy in experimental practice. In previous studies, various ferrite nanoparticles exhibited relatively high transverse relaxation times and strong negative T2 contrast. These properties were also supposed for the zinc-doped cobalt ferrite nanoparticles. This assumption was confirmed by studying their magnetic and contrasting properties. Fluorescence properties of the prepared nanoparticles were also successfully studied. With respect to the intended applications of these particles, the issue of suitable surface modification of magnetic cores, their colloidal stabilization in an aqueous suspension and toxicity in biological systems were studied. Key words: nanoparticles, ferrites, MRI, relaxation
|
264 |
First-Order Hyperbolic-Relaxation Turbulence Modelling for Moment-ClosuresYan, Chao 15 June 2022 (has links)
This dissertation presents a study of hyperbolic turbulence modelling for the Gaussian ten-moment equations. In gaskinetic theory, moment closures offer the possibility of deriving a series of gas-dynamic governing equations from the Boltzmann equation. One typical example, the Gaussian ten-moment model, which takes the form of hyperbolic-relaxation equations, is considered as a competitive model for viscous gas flow when heat transfer effects are negligible. The hyperbolic nature of this model gives it several numerical advantages, compared to the Navier-Stokes equations. However, until this study, the application of the ten-moment equations has been limited to laminar flows, due to the lack of appropriate turbulence models. In this work, the ten-moment equations are, for the first time, Reynolds-averaged. The resulting equations inherit the hyperbolic balance-law form from the original equations with new unknowns, which require approximation by turbulence models. Most of the traditional turbulence models for the Reynolds-averaged Navier-Stokes equations are not perfectly well-suited for the Reynolds-averaged ten-moment equations, because the second-order derivatives presented in these models can break the pure hyperbolic nature of the original model. The relaxation methods are therefore proposed in this project to reform the existing turbulence models. Two relaxation methods, the Chen-Levermore-Liu p-system and Cattaneo-Vernotte models, are used to hyperbolize the Prandtl’s one-equation model, standard k-ε model and Wilcox k-ω model. The hyperbolic versions of these turbulence models are first shown to be equivalent to their original forms. They are then coupled to the Reynolds-averaged ten-moment equations to build the overall hyperbolic governing equations for turbulence flows. An axisymmetric version of Reynolds-averaged ten-moment equations is also derived. A dispersion analysis is conducted for the resulting governing equations, which shows the corresponding dispersive behaviour and stability. The effect of the relaxation parameters is investigated through several numerical tests. All derived turbulence models are applied to solve canonical validation test problems, including two-dimensional planar mixing-layer, free-jet and circular free-jet. The numerical evaluations are analysed and compared against existing experimental measurements.
|
265 |
Non-invasive Monitoring of Degradation of Poly (lactide-co-glycolide) Hollow Fiber Channel for Recovery of Spinal Cord Injury Using Magnetic Resonance ImagingShahabi, Sagedeh Sadat January 2012 (has links)
Spinal cord injury (SCI) leads to axonal damage and limits the ability of the brain to communicate with the rest of the body. Several bioengineered approaches have been developed for the recovery of SCI. Among these techniques, degradable guidance tubes have shown promising results. However, design of nerve guide tubes requires several design considerations and has been a significant challenge. To assess the efficacy of a prototypical implanted nerve guide tubes, it is essential to perform continuous monitoring. In this respect, magnetic resonance imaging (MRI) is one of the most reliable imaging techniques as it offers the ability to achieve extraordinary high temporal and spatial resolution in addition to its non-invasive features. In spite of the excellent image quality of non-enhanced MRI various types of contrast agents have been developed to further enhance the contrast and allow improved visualization. The MRI contrast agents principally work by shortening the T1 or T2 relaxation times of protons located nearby.
The presented study was intended to evaluate the in vitro degradation of the nerve guide tubes made of poly (lactic-co-glycolic acid) (PLGA). PLGA tubes incorporated with different concentrations of superparamagnetic iron oxide (SPIO) were scanned by MRI 3T on weekly basis during the degradation period. Spin-echo (SE) sequence with various echo times (TEs) ranged from 13.3 to 314.4 msec was applied. T2 mapping was computed using in-house algorithm developed in Matlab. Least square fit was used to find the slope of the decay curve by plotting log intensity on the y-axis and echo time on the x-axis. The average T2 values were calculated.
Mass loss and water uptake of the degrading tubes were also measured weekly. Moreover, the micro-structural changes of the tubes were investigated using the scanning electron microscope (SEM). The MRI results showed that the concentration of SPIO affects the signal intensity of the T2 weighted images reducing the T2 relaxation time value. Accordingly, a linear correlation between SPIO concentration and T2 relaxation time was found. At the beginning of degradation, the SPIO nanoparticles were trapped within the polymeric network. Therefore, water penetration was the predominant factor affecting the T2 relaxation times. At week 5, a significant mass loss was observed. From this stage onwards, the trapped SPIO were released from the polymeric network increasing T2 relaxation time dramatically. According to SEM images, the size of the pores in PLGA guide tubes was increased with the degradation. Approaching the end of degradation, shrinkage of the tubes was observed and the degraded nerve guide tubes were shown to be collapsed. Similar shape variation was observed in T2 weighted MR images.
In summary, this study provided an approach to non-invasive monitoring of degradation behavior of nerve guide tubes using contrast enhancement. The developed technique is of great importance since it opened an insight to non-invasive monitoring of tissue engineered scaffolds for in vivo studies.
|
266 |
Improving electrochemical performance of Nickel - Yttria stabilized Zirconia cermet anodes employing nickel nanoparticlesGasper, Paul Joseph 30 August 2019 (has links)
Nickel-Yttria Stabilized Zirconia (Ni-YSZ) cermets are used as anodes in solid oxide fuel cells. These anodes are stable for tens of thousands of hours during operation and have low cost. In this work, Ni-YSZ anodes are infiltrated with nickel nanoparticles to increase the density of electrochemical reaction sites and improve their performance. However, infiltrated nickel nanoparticles are isolated from one another, so they are not electrochemically active. Two approaches have been utilized to activate infiltrated nickel nanoparticles: in-situ nickel spreading and simultaneous infiltration of nickel with Gd0.1Ce0.9O2-δ (GDC). In-situ nickel spreading, which occurs during exposure to anodic mass transfer limited currents, connects and activates nickel nanoparticles, improving anode performance but inherently causing nanoparticle coarsening. Simultaneous infiltration of Ni and GDC results in substantially improved anode performance, and the infiltrated nanostructures are more stable than infiltrated nickel. Detailed analysis of the electrochemical impedance by equivalent circuit modeling is used to separate the contributions of nickel and GDC infiltrants to the overall cell performance.
|
267 |
Spin-lattice relaxation of a 2E Jahn-Teller system.Vincent, Claude. January 1973 (has links)
No description available.
|
268 |
Magnetic Relaxation Dynamics and Processes in Mono- and Dinuclear Lanthanide Single-Molecule MagnetsHarriman, Katie Lois Marie 16 July 2021 (has links)
Single-molecule magnets (SMMs) have been lauded for their application in next generation devices for their enhanced information storage capabilities, increased processing speeds, and increased storage densities compared to bulk magnets. However, the success of SMMs in such applications and their technological readiness is hindered by their operation temperatures and memory lifetimes. SMMs are molecular species that possess a bistable ground state and magnetic anisotropy, which together result in an energy barrier to the reorientation of the magnetic moment. The magnetic memory response relies on its ability to retain magnetization in the absence of an external field. To this end, lanthanide ions with their large inherent magnetic anisotropy combined with well-defined crystal field microstates are attractive candidates for eliciting higher operation temperatures and lifetimes. This dissertation focuses on the use of lanthanide ions in the development of high barrier SMMs with a close emphasis on the magnetic anisotropy and crystal field manipulation through geometry, design, and modification.
In the pursuit of lanthanide (Ln)-based SMMs, two cyclooctatetraenyl (COT2-) complexes of the non-Kramers ion, TmIII, [TmIII(η8-COT)I(THF)2] and [K(18-C-6)(THF)2][TmIII(η8-COT)2], were isolated. As an ion that possess an integer angular momentum projection (J = 6), it was vital that a highly symmetric local environment was utilized to observe field-induced slow magnetic relaxation. The static and dynamic properties of TmIII(η8-COT)I(THF)2] and [K(18-C-6)(THF)2][TmIII(η8-COT)2] were characterized revealing Ueff of 7.93 K and 53.3 K, respectively. More importantly, the effect of increased symmetry was observed on the rate of quantum tunneling of the magnetization (QTM), where the rate was two orders of magnitude faster in the heteroleptic complex. This emphasized the importance of local symmetry for non-Kramers ions and contributed to the rare class of TmIII SMMs.
Due to the prevalent role of QTM in Ln-based SMMs, a common strategy is to induce magnetic communication between Ln ions to overcome its detrimental effects. To this end, bridging units should be sufficiently small enough to bring the Ln ions close in proximity, yet the surrounding environment of the metal center should still promote uniaxial magnetic anisotropy. We compared the effect of ancillary ligands on the magnetic properties of two dinuclear DyIII compounds with the same {μ-Cl}2 core bridge. The complexes [DyIII{N(SiMe3)2}2(μ-Cl)(THF)]2 and [DyIII(η8-COT)(μ-Cl)(THF)]2 were characterized with static and dynamic magnetic measurements. The well-matched ligand field of the silyl amide ligands with the DyIII ion, precluded the observation of zero field tunneling. While both complexes are characterized by antiferromagnetic coupling, it is evident that peripheral ligands also play a vital role in determining the performance of multinuclear SMMs.
Magnetic coupling between 4f centers is classically weak; however, the use of ligands with diffuse electron clouds may penetrate the shielded 4f orbitals to effectively promote communication. One such ligand that had not previously been investigated for its ability to couple the magnetic moment of Ln ions was the trianionic cycloheptatrienyl. Utilizing Ln silyl amides, in situ deprotonation afforded the dinuclear complexes [KLnIII2(η7-C7H7){N(SiMe3)2}4] (Ln = GdIII, DyIII, ErIII). The static and dynamic magnetic characterization revealed rare and highly sought-after ferromagnetic coupling in a Ln-based system. The ancillary silyl amide ligands were a necessity for the isolation of these dinuclear species yet did not provide a synergistic ligand field for the Ln ions when combined with the cycloheptatrienyl bridge, ultimately preventing the observation of slow relaxation in some of the variants studied.
Pseudo-linear complexes, those molecules with strong axial donors have shown immense promise in the design of highly efficient SMMs. Our work has shown that amides are effective in directing the anisotropy of the Ln ions, thus the removal of the central organometallic bridge from the previous compounds would effectively create a highly anisotropic complex. This was achieved in our study of a formally five-coordinate complex of a ferrocene diamide ligated DyIII ion, [(NNTBS)DyIIII(THF)2]. The static and dynamic magnetic properties were characterized, yielding Ueff = 771 K with open magnetization hysteresis loops at zero-field, due in part to the axial disposition of the nitrogen atoms of the diamide ligand. Computational analysis of the parent compound and its fragments was completed. Our results indicated that the presence of equatorially coordinated solvent molecules such as THF, influence the axiality in the crystal field microstates more significantly than the coordinated halide.
The removal of coordinated solvent such as THF, is imperative to improve the performance of DyIII SMMs. By way of a bulky bisanilide ligand that precludes the approach of solvent to the metal center, combined with a large bite angle, [K(DME)n][LArDyIII(X)2], a formally four coordinate complex, was investigated. In contrast to the complex of the ferrocene diamide ligand, retention of the magnetic moment was not observed at zero-field, despite the fact that the slow relaxation dynamics occurred over a greater temperature range for which Ueff = 1278-1334 K. In addition, variants of the bound halide (X = Cl, I) were examined for their effect on the static and dynamic magnetic properties, revealing zero field relaxation times that were on average 5.6x longer for the heavier congener.
The collective results of the findings presented herein are being utilized to synthesize new low-coordinate Ln-based SMMs. Combining divalent and redox chemistries with bulky amido ligands will ideally elicit even larger energy barriers to spin reversal and higher blocking temperatures, supporting the push towards Ln-based SMMs with increased technological readiness.
|
269 |
NEWTON'S METHOD AS A MEAN VALUE METHODTran, Vanthu Thy 08 August 2007 (has links)
No description available.
|
270 |
Transport des charges dans le silicium amorphe hydrogéné (a-Si:H)Chen, Wen Chao January 1998 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
Page generated in 0.0318 seconds