• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 7
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 74
  • 74
  • 27
  • 24
  • 16
  • 14
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

RECONFIGURABLE PATCH ANTENNA FOR FREQUENCY DIVERSITY WITH HIGH FREQUENCY RATIO (1.6:1)

Jung, Chang won, Lee, Ming-jer, Liu, Sunan, Li, G. P., De Flaviis, Franco 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Reconfigurable patch antenna integrated with RF mircoelectromechanical system (MEMS) switches is presented in this paper. The proposed antenna radiates circularly polarized wave at selectable dual frequencies (4.7 GHz and 7.5GHz) of high frequency ratio (1.6:1). The switches are incorporated into the diagonally-fed square patch for controlling the operation frequency, and a rectangular stub attached to the edge of the patch acts as the perturbation to produce the circular polarization. Gain of proposed antenna is 5 - 6dBi, and axial ratio satisfies 3dB criterion at both operating frequencies. The switches are monolithically integrated on quartz substrate. The antenna can be used in applications requiring frequency diversity of remarkable high frequency ratio.
12

Multi-Port RF MEMS Switches and Switch Matrices

Daneshmand, Mojgan January 2006 (has links)
Microwave and millimeter wave switch matrices are essential components in telecommunication systems. These matrices enhance satellite capacity by providing full and flexible interconnectivity between the received and transmitted signals and facilitate optimum utilization of system bandwidth. Waveguide and semiconductor technology are two prominent candidates for the realizing such types of switch matrices. Waveguide switches are dominant in high frequency applications of 100 ? 200 GHz and in high power satellite communication. However, their heavy and bulky profile reinforces the need for a replacement. In some applications, semiconductor switches are an alternative to mechanical waveguide switches and utilize PIN diodes to create the ON and OFF states. Although, these switches are small in size, they exhibit poor RF performance and low power handling. <br /><br /> RF MEMS technology is a good candidate to replace the conventional switches and to realize an entire switch matrix. This technology has a great potential to offer superior RF performance with miniaturized dimensions. Because of the advantages of MEMS technology numerous research studies have been devoted to develop RF MEMS switches. However, they are mostly concentrated on Single-Pole Single-Throw (SPST) configurations and very limited work has been performed on MEMS multi-port switches and switch matrices. Here, this research has been dedicated on developing multi-port RF MEMS switches and amenable interconnect networks for switch matrix applications. To explore the topic, three tasks are considered: planar (2D) multi-port RF MEMS switches, 3D multi-port RF MEMS switches, and RF MEMS switch matrix integration. <br /><br /> One key objective of this thesis is to investigate novel configurations for planar multi-port (SPNT), C-type, and R-type switches. Such switches represent the basic building blocks of switch matrices operating at microwave frequencies. An in house monolithic fabrication process dedicated to electrostatic multi-port RF MEMS switches is developed and fine tuned. The measurement results exhibit an excellent RF performance verifying the concept. Also, thermally actuated multi-port switches for satellite applications are designed and analyzed. The switch performance at room condition as well as at a very low temperature of 77K degrees (to resemble the harsh environment of satellite applications) is measured and discussed in detail. <br /><br /> For the first time, a new category of 3D RF MEMS switches is introduced to the MEMS community. These switches are not only extremely useful for high power applications but also have a great potential for high frequencies and millimetre-waves. The concept is based on the integration of vertically actuated MEMS actuators inside 3D transmission lines such as waveguides and coaxial lines. An SPST and C-type switches based on the integration of rotary thermal and electrostatic actuators are designed and realized. The concept is verified for the frequencies up to 30GHz with measured results. A high power test analysis and measurement data indicates no major change in performance as high as 13W. <br /><br /> The monolithic integration of the RF MEMS switch matrix involves the design and optimization of a unique interconnect network which is amenable to the MEMS fabrication process. While the switches and interconnect lines are fabricated on the front side, taking advantage of the back side patterning provides a high isolation for cross over junctions. Two different techniques are adopted to optimize the interconnect network. They are based on vertical three-via interconnects and electromagnetically coupled junctions. The data illustrates that for a return loss of less than -20dB up to 30GHz, an isolation of better than 40dB is obtained. This technique not only eliminates the need for expensive multilayer manufacturing process such as Low Temperature Co-fired Ceramics (LTCC) but also provides a unique approach to fabricate the entire switch matrix monolithically.
13

Design, Optimization and Fabrication of Amorphous Silicon Tunable RF MEMS Inductors and Transformers

Chang, Stella January 2006 (has links)
High performance inductors are playing an increasing role in modern communication systems. Despite the superior performance offered by discrete components, parasitic capacitances from bond pads, board traces and packaging leads reduce the high frequency performance and contribute to the urgency of an integrated solution. Embedded inductors have the potential for significant increase in reliability and performance of the IC. Due to the driving force of CMOS integration and low costs of silicon-based IC fabrication, these inductors lie on a low resistivity silicon substrate, which is a major source of energy loss and limits the frequency response. Therefore, the quality factor of inductors fabricated on silicon continues to be low. The research presented in this thesis investigates amorphous Si and porous Si to improve the resistivity of Si substrates and explores amorphous Si as a structural material for low temperature MEMS fabrication. Planar inductors are built-on undoped amorphous Si in a novel application and a 56% increase in quality factor was measured. Planar inductors are also built-on a porous Si and amorphous Si bilayer and showed 47% improvement. Amorphous Si is also proposed as a low temperature alternative to polysilicon for MEMS devices. Tunable RF MEMS inductors and transformers are fabricated based on an amorphous Si and aluminum bimorph coil that is suspended and warps in a controllable manner. The 3-D displacement is accurately predicted by thermomechanical simulations. The tuning of the devices is achieved by applying a DC voltage and due to joule heating the air gap can be adjusted. A tunable inductor with a 32% tuning range from 5.6 to 8.2 nH and a peak Q of 15 was measured. A transformer with a suspended coil demonstrated a 24% tuning range of the mutual coupling between two stacked windings. The main limitation posed by post-CMOS integration is a strict thermal budget which cannot exceed a critical temperature where impurities can diffuse and materials properties can change. The research carried out in this work accommodates this temperature restriction by limiting the RF fabrication processes to 150°C to facilitate system integration on silicon.
14

Low Temperature RF MEMS Inductors Using Porous Anodic Alumina

Oogarah, Tania Brinda January 2008 (has links)
In today’s communication devices, the need for high performance inductors is increasing as they are extensively used in RF integrated circuits (RFICs). This need is even more pronounced for variable inductors as they are widely required in tunable filters, voltage controlled amplifiers (VCO) and low noise amplifiers (LNA). For RFICs, the main tuning elements are solid state varactors that are used in conjunction with invariable inductors. However, they have limited linearity, high resistive losses, and low self resonant frequencies. This emphasizes the need for developing another tuning element that can be fabricated monolithically with ICs and can offer high range of tuning. Due to the ease of CMOS integration and low cost silicon based IC fabrication, the inductors currently used are a major source of energy loss, therefore driving the overall quality factor and performance of the chip down. During the last decade there has been an increase in research in RF MicroelectroMechanical Systems (RF MEMS) to develop high quality on chip tunable RF components. MEMS capacitors were initially proposed to substitute the existing varactors, however they can not be easily integrated on top of CMOS circuits. RF MEMS variable inductors have recently attracted attention as a better alternative. The research presented here explores using porous anodic alumina (PAA) in CMOS and MEMS fabrication. Due to its low cost and low temperature processing, PAA is an excellent candidate for silicon system integration. At first, PAA is explored as an isolation layer between the inductor and the lossy silicon substrate. Simulations show that although the dielectric constant of the PAA is tunable, the stress produced by the required thicker layers is problematic. Nevertheless, the use of PAA as a MEMS material shows much more promise. Tunable RF MEMS inductors based on bimorph sandwich layer of aluminum PAA and aluminum are fabricated and tested. A tuning range of 31% is achieved for an inductance variation of 5.8 nH to 7.6 nH at 3 GHz. To further improve the Q, bimorph layers of gold and PAA are fabricated on Alumina substrates. A lower tuning range is produced; however the quality factor performance is greatly improved. A peak Q of over 30 with a demonstrated 3% tuning range is presented. Depending on the need for either high performance or tunability, two types of tunable RF MEMS inductors are presented. Although PAA shows promise as a mechanical material for MEMS, the processing parameters (mainly stress and loss tangent) need to be improved if used as an isolation layer. To our knowledge, this is the first time this material has been proposed and successfully used as a structural material for MEMS devices and CMOS processes.
15

Multi-Port RF MEMS Switches and Switch Matrices

Daneshmand, Mojgan January 2006 (has links)
Microwave and millimeter wave switch matrices are essential components in telecommunication systems. These matrices enhance satellite capacity by providing full and flexible interconnectivity between the received and transmitted signals and facilitate optimum utilization of system bandwidth. Waveguide and semiconductor technology are two prominent candidates for the realizing such types of switch matrices. Waveguide switches are dominant in high frequency applications of 100 ? 200 GHz and in high power satellite communication. However, their heavy and bulky profile reinforces the need for a replacement. In some applications, semiconductor switches are an alternative to mechanical waveguide switches and utilize PIN diodes to create the ON and OFF states. Although, these switches are small in size, they exhibit poor RF performance and low power handling. <br /><br /> RF MEMS technology is a good candidate to replace the conventional switches and to realize an entire switch matrix. This technology has a great potential to offer superior RF performance with miniaturized dimensions. Because of the advantages of MEMS technology numerous research studies have been devoted to develop RF MEMS switches. However, they are mostly concentrated on Single-Pole Single-Throw (SPST) configurations and very limited work has been performed on MEMS multi-port switches and switch matrices. Here, this research has been dedicated on developing multi-port RF MEMS switches and amenable interconnect networks for switch matrix applications. To explore the topic, three tasks are considered: planar (2D) multi-port RF MEMS switches, 3D multi-port RF MEMS switches, and RF MEMS switch matrix integration. <br /><br /> One key objective of this thesis is to investigate novel configurations for planar multi-port (SPNT), C-type, and R-type switches. Such switches represent the basic building blocks of switch matrices operating at microwave frequencies. An in house monolithic fabrication process dedicated to electrostatic multi-port RF MEMS switches is developed and fine tuned. The measurement results exhibit an excellent RF performance verifying the concept. Also, thermally actuated multi-port switches for satellite applications are designed and analyzed. The switch performance at room condition as well as at a very low temperature of 77K degrees (to resemble the harsh environment of satellite applications) is measured and discussed in detail. <br /><br /> For the first time, a new category of 3D RF MEMS switches is introduced to the MEMS community. These switches are not only extremely useful for high power applications but also have a great potential for high frequencies and millimetre-waves. The concept is based on the integration of vertically actuated MEMS actuators inside 3D transmission lines such as waveguides and coaxial lines. An SPST and C-type switches based on the integration of rotary thermal and electrostatic actuators are designed and realized. The concept is verified for the frequencies up to 30GHz with measured results. A high power test analysis and measurement data indicates no major change in performance as high as 13W. <br /><br /> The monolithic integration of the RF MEMS switch matrix involves the design and optimization of a unique interconnect network which is amenable to the MEMS fabrication process. While the switches and interconnect lines are fabricated on the front side, taking advantage of the back side patterning provides a high isolation for cross over junctions. Two different techniques are adopted to optimize the interconnect network. They are based on vertical three-via interconnects and electromagnetically coupled junctions. The data illustrates that for a return loss of less than -20dB up to 30GHz, an isolation of better than 40dB is obtained. This technique not only eliminates the need for expensive multilayer manufacturing process such as Low Temperature Co-fired Ceramics (LTCC) but also provides a unique approach to fabricate the entire switch matrix monolithically.
16

Design, Optimization and Fabrication of Amorphous Silicon Tunable RF MEMS Inductors and Transformers

Chang, Stella January 2006 (has links)
High performance inductors are playing an increasing role in modern communication systems. Despite the superior performance offered by discrete components, parasitic capacitances from bond pads, board traces and packaging leads reduce the high frequency performance and contribute to the urgency of an integrated solution. Embedded inductors have the potential for significant increase in reliability and performance of the IC. Due to the driving force of CMOS integration and low costs of silicon-based IC fabrication, these inductors lie on a low resistivity silicon substrate, which is a major source of energy loss and limits the frequency response. Therefore, the quality factor of inductors fabricated on silicon continues to be low. The research presented in this thesis investigates amorphous Si and porous Si to improve the resistivity of Si substrates and explores amorphous Si as a structural material for low temperature MEMS fabrication. Planar inductors are built-on undoped amorphous Si in a novel application and a 56% increase in quality factor was measured. Planar inductors are also built-on a porous Si and amorphous Si bilayer and showed 47% improvement. Amorphous Si is also proposed as a low temperature alternative to polysilicon for MEMS devices. Tunable RF MEMS inductors and transformers are fabricated based on an amorphous Si and aluminum bimorph coil that is suspended and warps in a controllable manner. The 3-D displacement is accurately predicted by thermomechanical simulations. The tuning of the devices is achieved by applying a DC voltage and due to joule heating the air gap can be adjusted. A tunable inductor with a 32% tuning range from 5.6 to 8.2 nH and a peak Q of 15 was measured. A transformer with a suspended coil demonstrated a 24% tuning range of the mutual coupling between two stacked windings. The main limitation posed by post-CMOS integration is a strict thermal budget which cannot exceed a critical temperature where impurities can diffuse and materials properties can change. The research carried out in this work accommodates this temperature restriction by limiting the RF fabrication processes to 150°C to facilitate system integration on silicon.
17

Low Temperature RF MEMS Inductors Using Porous Anodic Alumina

Oogarah, Tania Brinda January 2008 (has links)
In today’s communication devices, the need for high performance inductors is increasing as they are extensively used in RF integrated circuits (RFICs). This need is even more pronounced for variable inductors as they are widely required in tunable filters, voltage controlled amplifiers (VCO) and low noise amplifiers (LNA). For RFICs, the main tuning elements are solid state varactors that are used in conjunction with invariable inductors. However, they have limited linearity, high resistive losses, and low self resonant frequencies. This emphasizes the need for developing another tuning element that can be fabricated monolithically with ICs and can offer high range of tuning. Due to the ease of CMOS integration and low cost silicon based IC fabrication, the inductors currently used are a major source of energy loss, therefore driving the overall quality factor and performance of the chip down. During the last decade there has been an increase in research in RF MicroelectroMechanical Systems (RF MEMS) to develop high quality on chip tunable RF components. MEMS capacitors were initially proposed to substitute the existing varactors, however they can not be easily integrated on top of CMOS circuits. RF MEMS variable inductors have recently attracted attention as a better alternative. The research presented here explores using porous anodic alumina (PAA) in CMOS and MEMS fabrication. Due to its low cost and low temperature processing, PAA is an excellent candidate for silicon system integration. At first, PAA is explored as an isolation layer between the inductor and the lossy silicon substrate. Simulations show that although the dielectric constant of the PAA is tunable, the stress produced by the required thicker layers is problematic. Nevertheless, the use of PAA as a MEMS material shows much more promise. Tunable RF MEMS inductors based on bimorph sandwich layer of aluminum PAA and aluminum are fabricated and tested. A tuning range of 31% is achieved for an inductance variation of 5.8 nH to 7.6 nH at 3 GHz. To further improve the Q, bimorph layers of gold and PAA are fabricated on Alumina substrates. A lower tuning range is produced; however the quality factor performance is greatly improved. A peak Q of over 30 with a demonstrated 3% tuning range is presented. Depending on the need for either high performance or tunability, two types of tunable RF MEMS inductors are presented. Although PAA shows promise as a mechanical material for MEMS, the processing parameters (mainly stress and loss tangent) need to be improved if used as an isolation layer. To our knowledge, this is the first time this material has been proposed and successfully used as a structural material for MEMS devices and CMOS processes.
18

Tunable Filters and RF MEMS Variable Capacitors with Closed Loop Control

Zahirovic, Nino January 2011 (has links)
Multi-band and multi-mode radios are becoming prevalent and necessary in order to provide optimal data rates across a network with a diverse and spotty landscape of coverage areas (3G, HSPA, LTE, etc.). As the number of required bands and modes increases, the aggregate cost of discrete RF signal chains justi es the adoption of tunable solutions. Tunable fi lters are one of the pieces crucial to signal chain amalgamation. The main requirements for a tunable fi lter are high unloaded quality factor, wide tuning range, high tuning speed, high linearity, and small size. MEMS technology is the most promising in terms of tuning range, quality factor, linearity and size. In addition, a fi lter that maintains a constant passband bandwidth as the center frequency is tuned is preferred since the analog baseband processing circuitry tends to be tailored for a particular signal bandwidth. In this work, a novel design technique for tunable fi lters with controlled and predictable bandwidth variation is presented. The design technique is presented alongside an analysis and modeling method for predicting the final filter response during design optimization. The method is based on the well known coupling matrix model. In order to demonstrate the design and modeling technique, a novel coupling structure for stripline fi lters is presented that results in substantial improvements in coupling bandwidth variation over an octave tuning range when compared to combline and interdigitated coupled line fi lters. In order for a coupled resonator filter to produce an equal ripple Chebyshev response, each resonator of the fi lter must be tuned to precisely the same resonant frequency. Production tuned fi lters are routinely tuned in the lab and production environments by skilled technicians in order to compensate for manufacturing tolerances. However, integrated tunable filters cannot be tuned by traditional means since they are integrated into systems on circuit boards or inside front end modules. A fixed tuning table for all manufactured modules is inadequate since the required tuning accuracy exceeds the tolerance of the tuning elements. In this work, we develop tuning techniques for the automatic in-circuit tuning of tunable filters using scalar transmission measurement. The scalar transmission based techniques obviate the use of directional couplers. Techniques based on both swept and single frequency scalar transmission measurement are developed. The swept frequency technique, based on the Hilbert transform derived relative groupdelay, tunes both couplings and resonant frequencies while the single frequency technique only tunes the center frequency. High performance filters necessitate high resonator quality factors. Although fi lters are traditionally treated as passive devices, tunable fi lters need to be treated as active devices. Tuning elements invariably introduce non-linearities that limit the useful power handling of the tunable fi lter. RF MEMS devices have been a topic of intense research for many years for their promising characteristics of high quality factor and high power handling. Control and reliability issues have resulted in a shift from continuously tunable devices to discretely switched devices. However, fi lter tuning applications require fine resolution and therefore many bits for digital capacitor banks. An analog/digital hybrid tuning approach would enable the tuning range of a switched capacitor bank to be combined with the tuning resolution of an analog tunable capacitor. In this work, a device-level position control mechanism is proposed for piezoresistive feedback of device capacitance over the device's tuning range. It is shown that piezoresistve position control is ef ective at improving capacitance uncertainty in a CMOS integrated RF MEMS variable capacitor.
19

Design and Fabrication of RF-MEMS Switch with High Isolation Characteristic

Chien, Wei-Hsun 03 September 2010 (has links)
In order to apply to S-Band (1-4.5 GHz) of wireless communication system, we designed and fabricated a high-insolating RF-MEMS switch by surface micromachining technology in this study. In terms of the micro switch, we performed the structural design, high frequency simulation, components process integration and high-frequency measurement in this study. Especially for making components be high-isolation, low-loss and low-driving voltage, we proposed the following three methods: (i) adjusting the space and width of the transmission lines to improve the RF performance; (ii) applying the stress imbalance, by using dual metal composite top electrode, to form a arched contact electrode and reduce the drive voltage efficiently; (iii) using non-isometric spring structure to stabilize the electrode movement of the components. Besides, we did the optimizing simulation for this study, which were supported by Ansoft-HFSS and ADS, in terms of the micro switch which has different structural design as mentioned above. The size of the optimized RF micro-switch which we developed for this study is only 145 £gm ¡Ñ 205 £gm. Switched from on-state to off-state, the component needs 36.5V drive voltage only. According to the result of the commercial network analyzer in 1-4.5GHz frequency range, the isolation rate of the components reaches -59.721dB while off-state; the insert los reaches -1.625dB while on-state.
20

Novel rf mems tunable filters with adjustable spurious suppression

Sekar, Vikram 15 May 2009 (has links)
This thesis presents the theory and design of fixed and Radio Frequency (RF) Microelectromechanical Systems (MEMS) -based tunable microwave filters for RF and microwave applications. The methodology for the design of coupled resonator filters is explained in detail and is used to design an end-coupled microstrip filter at 1.5 GHz with inductive loading using a stepped microstrip discontinuity to lower the resonance frequency of the half-wavelength microstrip resonator. The fabricated endcoupled filter shows center frequencies of 1.36 GHz and 1.03 GHz in the unloaded and loaded state respectively, with insertion losses between 1.2-1.5 dB and return loss better than 10 dB in both states. The filter response shows spurious passbands at approximately twice the filter center frequencies. To overcome this problem and improve the upper rejection skirt of the filter, microstrip resonators with tapped input/output coupling and mixed inter-resonator coupling are used to suppress the spurious passband by introducing a transmission zero at spurious resonance frequency. Measurement results for the fabricated tapped-resonator filters show an improvement of the upper rejection skirt due to spurious suppression to a level of -40 dB, with insertion loss of 1.2-1.5 dB for the same center frequencies. The concepts developed from fabrication and measurement of fixed-tuned microstrip filters are used to design an inductively-loaded RF MEMS tunable filter with adjustable spurious suppression implemented using packaged metal-contact switches. The two-pole 5% filter has a tuning range of 17% from 1.06 GHz to 1.23 GHz with an insertion loss of 1.56-2.28 dB and return loss better than 13 dB over the tuning range. The inductive loading mechanism is used to tune the open-ended quarter wavelength stub such that a tunable transmission zero supresses the spurious resonance as the filter center frequency is tuned. The spurious passband response in both states is suppressed below -20 dB. The unloaded quality factor (Q) of the filter varies from 127 to 75 as the filter is tuned. The equivalent circuit model for the series metalcontact packaged RF MEMS switch used in the tunable filter is derived from full-wave electromagnetic simulations and used to predict the effect of MEMS switch parasitics on the overall performance of the tunable filter.

Page generated in 0.023 seconds