• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 9
  • 6
  • 5
  • 2
  • Tagged with
  • 100
  • 100
  • 100
  • 63
  • 23
  • 21
  • 18
  • 18
  • 18
  • 16
  • 14
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Role promotoru při regulaci RNA sestřihu / Role of promoter in the regulation of alternative splicing

Kozáková, Eva January 2014 (has links)
It was shown that 95 % of human multi-exon genes are alternatively spliced and the regulation of alternative splicing is extremely complex. Most pre-mRNA splicing events occur co- transcriptionally and there is increasing body of evidence, that chromatin modifications play an important role in the regulation of alternative splicing. Here we showed that inhibition of histone deacetylases (HDACs) modulates alternative splicing of ~700 genes via induction of histone H4 acetylation and increase of Pol II elongation rate along alternative region. We identified HDAC1 the catalytic activity of which is responsible for changes in alternative splicing. Then, we analyzed whether acetylhistone binding protein Brd2 regulates alternative splicing and showed that Brd2 occupies promoter regions of targeted genes and controls alternative splicing of ~300 genes. Later we showed that knockdown of histone acetyltransferase p300 promotes inclusion of the alternative fibronectin (FN1) EDB exon. p300 associates with CRE sites in the promoter via the CREB transcription factor. We created mini-gene reporters driven by an artificial promoter containing CRE sites. Both deletion and mutation of the CRE site affected EDB alternative splicing in the same manner as the p300 knockdown. Next we showed that p300 controls histone...
22

Organisation de la chromatine et signalisation par les oestrogènes / Impact of the chromatine organization in transcriptional regulation mediated by estrogen receptor

Quintin, Justine 06 March 2013 (has links)
En réponse à son environnement composé de signaux endogènes et exogènes, une cellule doit pouvoir adapter son transcriptome, et cela à travers une modulation fine de l'expression de ses gènes. Les mécanismes permettant une telle adaptation reposent sur de multiples paramètres, entre autre l'organisation du génome, que ce soit au niveau de sa séquence primaire ou de son organisation au sein de la chromatine qui est un support pour l'intégration de nombreuses informations (structurelles et épigénétiques). De plus, l'organisation tridimensionnelle du noyau cellulaire apporte des contraintes physiques et fonctionnelles qui contribuent également à ces régulations. Afin de comprendre comment toutes ces informations peuvent être intégrées lorsqu'un signal régule la transcription d'un ensemble de gènes colinéaires («cluster» de gènes), nos études se sont focalisées sur la description et dissection des mécanismes impliqués dans la régulation coordonnées de gènes œstrogéno-dépendant par le récepteur aux œstrogènes (ER) et ses facteurs pionniers (FOXA1, FOXA2 et GATAs) dans des cellules cancéreuses d'origine mammaire. Dans ce cadre, nous nous sommes plus particulièrement intéressés au cluster TFF, situé sur le bras long du chromosome 21, incluant le gène modèle TFF1, en utilisant des techniques d'analyse à grande échelle (ChIP-chip, ChIP-seq, 4C et analyses transcriptomiques). / A given cell has to be able to adapt its fate and homeostasis in response to endogenous and exogenous signals. This adaptation occurs through finely tuned regulations of genes' expressions leading to the variation of their transcriptomes. Multiple parameters have to be integrated in order to provide such mechanisms of regulation. First, the primary sequence of the genome and its organization into chromatin are major regulatory components that harbor genetic, structural and epigenetic information. Second, the three-dimensional organization of the genome into the nucleus brings both physical and functional constraints that also contribute towards these regulatory processes. Here, we engaged a work aiming to understand and dissect how these several levels of information are integrated during the transcriptional regulation of colinear genes (cluster of genes) by the same signal. We took as a model the coordinated regulation of the estrogen-sensitive TFF cluster driven by the estrogen receptor (ER) and its pioneering factors (FOXA1, FOXA2 and GATAs) in mammary cancer cells. This cluster is located within the long arm of the chromosome 21, and contains the gene model termed TFF1. We used large-scale methods (ChIP-chip, ChIP-seq, 4C and microarray transcriptomic analyses) to decipher these dynamic mechanisms.
23

Investigation of the role of essential proteins in gene silencing at the centromere of Schizosaccharomyces pombe

Dobbs, Edward January 2012 (has links)
The centromeres of eukaryotes have a region on which the kinetochore is assembled, flanked by heterochromatin which provides cohesion between the sister chromatids during cell division. When centromeric heterochromatin is lost chromosomes no longer segregate evenly into the daughter cells during cell division. In the fission yeast Schizosaccharomyces pombe (S. pombe) RNA interference (RNAi) is responsible for maintaining this heterochromatin. The pathway is part of a feedback loop whereby siRNAs generated from non-coding centromere transcripts are loaded into an Argonaute complex. The siRNAs guide the complex to the homologous centromere repeats in order to recruit Clr4 which modifies histone H3 with the heterochromatin mark H3K9me. A previous screen to find factors affecting centromere silencing isolated 13 loci termed centromere: suppressor of position-effect (csp) 1-13. Several csp mutants have been identified to be RNAi components. In this investigation the csp6 locus has been identified to be the Hsp70 gene ssa2+. It has been demonstrated that Argonaute proteins from plants and flies require Hsp70/90 chaperone activity for loading of siRNA. It therefore seems likely that Hsp70 may play a similar role in fission yeast. Genetic and biochemical techniques have been used in this study to investigate if the csp6 alleles are affecting siRNA loading in S. pombe. RNA Polymerase II (RNAPII) transcribes the pre-siRNA transcripts from the centromere repeats. csp3 was identified to be an allele of the RNAPII subunit rpb7+. rpb7-G150D was found to cause a silencing defect in the centromeric heterochromatin through a defect in transcription. Another RNAPII mutation, rpb2-m203, was found to have strong silencing defects caused by an unidentified non-transcriptional role in RNAi-mediated heterochromatin formation at the centromere. In order to gain more insight into the role of RNAPII in heterochromatin assembly I performed a screen in which the subunits rpb3 and rpb11 were subjected to random mutagenesis. Several mutants were isolated and characterisation of phenotypes regarding heterochromatin at the centromere has been carried out for nine of the mutants. As a result a novel phenomenon of RNAi-independent silencing at the centromere has been discovered.
24

Structural and Functional Investigation of Promoter Distortion and Opening in the RNA Polymerase II Cleft

Dienemann, Christian 09 April 2018 (has links)
No description available.
25

Investigating the role of mRNA capping enzyme in C-MYC function

Lombardi, Olivia January 2017 (has links)
C-MYC is a transcription factor and a potent driver of many human cancers. In addition to regulating transcription, C-MYC promotes formation of the mRNA cap which is important for transcript maturation and translation. However, the mechanistic details of C-MYC-dependent mRNA capping are not fully understood. Since anti-cancer strategies to directly target the C-MYC protein have had limited success, enzymatic co-factors or effectors of C-MYC present attractive alternatives for therapeutic intervention of C-MYC-driven cancers. mRNA capping enzyme (CE) initiates mRNA cap formation by catalysing the linkage of inverted guanosine via a triphosphate bridge to the first transcribed nucleotide. The involvement of CE in C-MYC-dependent mRNA capping and C-MYC function has not yet been explored. Therefore, I sought to determine whether C-MYC regulates CE, and whether CE is required for C-MYC function. I found that C-MYC promotes CE recruitment to RNA polymerase II (RNA pol II) transcription complexes and to regions proximal to transcription start sites on chromatin. Consistently, C-MYC increases RNA pol II-associated CE activity. Interestingly, cells driven by C-MYC are highly dependent on CE for C-MYC-induced target gene expression and cell transformation, but only when C-MYC is overexpressed; C-MYC-independent cells or cells retaining normal control of C-MYC expression are insensitive to CE inhibition. C-MYC expression is also dependent on CE. Taken together, I present a bidirectional regulatory relationship between C-MYC and CE which is potentially therapeutically relevant. Studies here strongly suggest that inhibiting CE is an attractive strategy to selectively target cancer cells which have acquired deregulated C-MYC.
26

Endogenous gypsy insulators mediate higher order chromatin organization and repress gene expression in Drosophila

Zhang, Shaofei 01 August 2011 (has links)
Chromatin insulators play a role in gene transcription regulation by defining chromatinboundaries. Genome-wide studies in Drosophila have shown that a large proportion of insulator sites are found in intergenic DNA sequences, supporting a role for these elements as boundaries. However, approximately 40% of insulator sites are also found in intragenic sequences, where they can potentially perform as yet unidentified functions. Here we show that multiple Su(Hw) insulator sites map within the 110 kb sequence of the muscleblind gene (mbl), which also forms a highly condensed chromatin structure in polytene chromosomes. Chromosome Conformation Capture assays indicate that Su(Hw) insulators mediate the organization of higher-order chromatin structures at the mbl locus, resulting in a barrier for the progression of RNA polymeraseII (PolII ), and producing a repressive effect on basal and active transcription. The interference of intragenic insulators in PolII progression suggests a role for insulators in the elongation process. Supporting this interpretation, we found that mutations in su(Hw) and mod(mdg4) also result in changes in the relative abundance of the mblD isoform, by promoting early transcription termination. These results provide experimental evidence for a new role ofintragenic Su(Hw) insulators in higher-order chromatin organization, repression of transcription, and RNA processing.
27

Transcriptional regulation of SRC by the SP family of factors and histone deacetylase inhibitors

Ellis, Danielle J. P. 05 July 2007
The SRC gene encodes pp60c-Src, a 60 kDa non-receptor tyrosine kinase that is frequently activated and/or overexpressed in many cancers including colon cancer. In a subset of colon cancer cell lines, it has been shown, that the overexpression of c-Src can be explained, in part, by the transcriptional activation of the SRC gene. As a result, the general goal of this thesis was to further characterize how SRC is transcriptionally regulated in human cancer cell lines. Two highly dissimilar promoters, the housekeeping-like SRC1A promoter, as well as the HIF-1Ñ regulated tissue-specific SRC1Ñ promoter, regulate SRC expression. hnRNP K and the Sp family of factors regulate the SRC1A promoter; however, the true impact of Sp3 on SRC1A activity was not understood. In this thesis, a comprehensive analysis of the effect of Sp3 on SRC1A activity was performed. Physiologically, Sp3 exists as four translational isoforms that, in part, dictate the activation potential of Sp3. In general, the longer forms of Sp3 were modest transcriptional activators of the SRC1A promoter whereas the shorter forms were unable to activate the SRC1A promoter. An analysis of all Sp3 isoforms identified that the shorter Sp3 isoforms could be converted into transcriptional activators of SRC1A if the SUMOylation of a critical lysine residue within the inhibitory domain was prevented. Conversely, SUMOylation of the same isoform had little effect on the activation potential of the longer Sp3 isoforms at the SRC1A promoter. These results suggest that transcriptional activation by Sp3 is promoter context-, isoform- and modification-dependent.<p>SRC is transcriptionally repressed by histone deacetylase inhibitors (HDIs) and despite unsuccessful studies attempting to identify HDI-responsive elements within the SRC promoter regions none could be identified. This finding also suggests that histone deacetylases (HDACs) may be required for SRC expression. Historically, it was believed that HDIs act at the histone level to alter chromatin dynamics through the inactivation of HDACs to result in histone hyperacetylation and increased transcriptional activation. As such, a systematic investigation of the changes in histone H3 and H4 acetylation status at the transcriptionally repressed SRC promoter regions and the transcriptionally activated p21WAF1 promoter region was performed. The p21WAF1 promoter was used as control in this study as p21WAF1 is a classical example of a gene transcriptionally activated by HDIs. Interestingly, similar changes in histone acetylation at the p21WAF1 promoter and both SRC promoter regions were observed. Upon closer examination of acetylation changes at discreet histone residues, it was observed that in the rare case that a particular residue was differentially acetylated upon treatment at the promoter regions analyzed, the SRC1Ñ and p21WAF1 promoter regions demonstrated more similar changes in acetylation as compared to SRC1A. Taken together, these results suggest that histone acetylation status is not an accurate indicator of transcriptional activity following HDI treatment. To further investigate HDI-mediated SRC repression, RNA Pol. II occupancy at the promoter and regions downstream of the promoter were assessed. Despite the continued occupancy of RNA Pol. II at the promoter regions, RNA Pol. II was lost from the 3¡¦ UTR upon treatment with HDIs. These findings suggest that RNA Pol. II . may be sequestered at the promoter regions upon treatment with HDIs possibly as a result of impeded transcription initiation and/or elongation. Further analysis of the phosphorylation status of RNA Pol. II identified that transcriptional initiation was indeed occurring despite HDI treatment; however, productive transcriptional elongation could not be confirmed thus suggesting a role for abrogated elongation in HDI mediated SRC repression. Complimentary analysis of the effects of HDACs on SRC expression suggested that while class I HDACs abrogated SRC expression, class II HDACs were required for the maintenance of SRC transcript levels in a promoter-independent fashion. Together, these results provide the basis for a model whereby HDIs repress SRC transcriptional expression through the inhibition of class II HDAC activity to eventually result in curtailed SRC transcriptional elongation.
28

Investigating the Integration of Alternative Splicing and Transcriptional Regulation in Mammalian Gene Expression

Ip, Yuen Yan 31 August 2011 (has links)
Alternative splicing functions to generate proteomic diversity and to regulate gene expression in higher eukaryotes. Genome-wide analyses suggest that alternative splicing and transcription typically regulate different gene sets to achieve cell- and tissue-type specificity. However, within individual cell-types, most alternative splicing events occur co-transcriptionally and are impacted by the transcriptional machinery. Despite many focused studies on co-transcriptional regulation of alternative splicing, its mechanisms and functions in regulation of gene expression are still poorly understood. To investigate relationships between transcription and alternative splicing, I performed microarray profiling of alternative splicing and transcript levels during activation of a T cell line. This experiment revealed that different sets of genes and associated functional categories are regulated by alternative splicing and transcription during T cell activation. I next employed inhibitors of RNA polymerase II (Pol II) elongation and microarray profiling to identify genes with coupled changes in splicing and transcript levels when transcription is impeded in activated T cell. Genes that were affected at both levels were significantly enriched in RNA binding and processing functions, and generally displayed increased alternative exon inclusion and decreased transcript levels when transcription elongation was disrupted. Similar effects were observed when transcription was driven by mutant polymerases with reduced elongation activity, and when cells were subjected to stress treatments. Many of the elongation inhibition-sensitive exons from the affected genes introduce premature termination codons into the mRNA, resulting in spliced mRNAs that are substrates of the nonsense-mediated decay pathway and further reduction in mRNA levels. ChIP-Seq experiment demonstrated that Pol II occupancy specifically increased in introns flanking the affected exons. These results provide evidence that a physiological function of transcription elongation-coupled alternative splicing regulation is to regulate the levels of RNA processing factors under conditions that reduce elongation activity, including cell stress. In summary, my thesis research has provided new insights into the integration of transcription and splicing control. While these two regulatory levels can control different gene sets during the activation of T cells, within a given cell type, they are closely coupled to control specific alternative splicing events that appear to coordinate mRNA and RNA processing factors levels.
29

Investigating the Integration of Alternative Splicing and Transcriptional Regulation in Mammalian Gene Expression

Ip, Yuen Yan 31 August 2011 (has links)
Alternative splicing functions to generate proteomic diversity and to regulate gene expression in higher eukaryotes. Genome-wide analyses suggest that alternative splicing and transcription typically regulate different gene sets to achieve cell- and tissue-type specificity. However, within individual cell-types, most alternative splicing events occur co-transcriptionally and are impacted by the transcriptional machinery. Despite many focused studies on co-transcriptional regulation of alternative splicing, its mechanisms and functions in regulation of gene expression are still poorly understood. To investigate relationships between transcription and alternative splicing, I performed microarray profiling of alternative splicing and transcript levels during activation of a T cell line. This experiment revealed that different sets of genes and associated functional categories are regulated by alternative splicing and transcription during T cell activation. I next employed inhibitors of RNA polymerase II (Pol II) elongation and microarray profiling to identify genes with coupled changes in splicing and transcript levels when transcription is impeded in activated T cell. Genes that were affected at both levels were significantly enriched in RNA binding and processing functions, and generally displayed increased alternative exon inclusion and decreased transcript levels when transcription elongation was disrupted. Similar effects were observed when transcription was driven by mutant polymerases with reduced elongation activity, and when cells were subjected to stress treatments. Many of the elongation inhibition-sensitive exons from the affected genes introduce premature termination codons into the mRNA, resulting in spliced mRNAs that are substrates of the nonsense-mediated decay pathway and further reduction in mRNA levels. ChIP-Seq experiment demonstrated that Pol II occupancy specifically increased in introns flanking the affected exons. These results provide evidence that a physiological function of transcription elongation-coupled alternative splicing regulation is to regulate the levels of RNA processing factors under conditions that reduce elongation activity, including cell stress. In summary, my thesis research has provided new insights into the integration of transcription and splicing control. While these two regulatory levels can control different gene sets during the activation of T cells, within a given cell type, they are closely coupled to control specific alternative splicing events that appear to coordinate mRNA and RNA processing factors levels.
30

Transcriptional regulation of SRC by the SP family of factors and histone deacetylase inhibitors

Ellis, Danielle J. P. 05 July 2007 (has links)
The SRC gene encodes pp60c-Src, a 60 kDa non-receptor tyrosine kinase that is frequently activated and/or overexpressed in many cancers including colon cancer. In a subset of colon cancer cell lines, it has been shown, that the overexpression of c-Src can be explained, in part, by the transcriptional activation of the SRC gene. As a result, the general goal of this thesis was to further characterize how SRC is transcriptionally regulated in human cancer cell lines. Two highly dissimilar promoters, the housekeeping-like SRC1A promoter, as well as the HIF-1Ñ regulated tissue-specific SRC1Ñ promoter, regulate SRC expression. hnRNP K and the Sp family of factors regulate the SRC1A promoter; however, the true impact of Sp3 on SRC1A activity was not understood. In this thesis, a comprehensive analysis of the effect of Sp3 on SRC1A activity was performed. Physiologically, Sp3 exists as four translational isoforms that, in part, dictate the activation potential of Sp3. In general, the longer forms of Sp3 were modest transcriptional activators of the SRC1A promoter whereas the shorter forms were unable to activate the SRC1A promoter. An analysis of all Sp3 isoforms identified that the shorter Sp3 isoforms could be converted into transcriptional activators of SRC1A if the SUMOylation of a critical lysine residue within the inhibitory domain was prevented. Conversely, SUMOylation of the same isoform had little effect on the activation potential of the longer Sp3 isoforms at the SRC1A promoter. These results suggest that transcriptional activation by Sp3 is promoter context-, isoform- and modification-dependent.<p>SRC is transcriptionally repressed by histone deacetylase inhibitors (HDIs) and despite unsuccessful studies attempting to identify HDI-responsive elements within the SRC promoter regions none could be identified. This finding also suggests that histone deacetylases (HDACs) may be required for SRC expression. Historically, it was believed that HDIs act at the histone level to alter chromatin dynamics through the inactivation of HDACs to result in histone hyperacetylation and increased transcriptional activation. As such, a systematic investigation of the changes in histone H3 and H4 acetylation status at the transcriptionally repressed SRC promoter regions and the transcriptionally activated p21WAF1 promoter region was performed. The p21WAF1 promoter was used as control in this study as p21WAF1 is a classical example of a gene transcriptionally activated by HDIs. Interestingly, similar changes in histone acetylation at the p21WAF1 promoter and both SRC promoter regions were observed. Upon closer examination of acetylation changes at discreet histone residues, it was observed that in the rare case that a particular residue was differentially acetylated upon treatment at the promoter regions analyzed, the SRC1Ñ and p21WAF1 promoter regions demonstrated more similar changes in acetylation as compared to SRC1A. Taken together, these results suggest that histone acetylation status is not an accurate indicator of transcriptional activity following HDI treatment. To further investigate HDI-mediated SRC repression, RNA Pol. II occupancy at the promoter and regions downstream of the promoter were assessed. Despite the continued occupancy of RNA Pol. II at the promoter regions, RNA Pol. II was lost from the 3¡¦ UTR upon treatment with HDIs. These findings suggest that RNA Pol. II . may be sequestered at the promoter regions upon treatment with HDIs possibly as a result of impeded transcription initiation and/or elongation. Further analysis of the phosphorylation status of RNA Pol. II identified that transcriptional initiation was indeed occurring despite HDI treatment; however, productive transcriptional elongation could not be confirmed thus suggesting a role for abrogated elongation in HDI mediated SRC repression. Complimentary analysis of the effects of HDACs on SRC expression suggested that while class I HDACs abrogated SRC expression, class II HDACs were required for the maintenance of SRC transcript levels in a promoter-independent fashion. Together, these results provide the basis for a model whereby HDIs repress SRC transcriptional expression through the inhibition of class II HDAC activity to eventually result in curtailed SRC transcriptional elongation.

Page generated in 0.0793 seconds