• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 343
  • 135
  • 52
  • 50
  • 24
  • 20
  • 18
  • 18
  • 13
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 820
  • 121
  • 108
  • 77
  • 76
  • 73
  • 72
  • 66
  • 66
  • 64
  • 60
  • 55
  • 52
  • 51
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
451

Media Framing as Brand Positioning: Analysis of Coverage Linking Phish to the Grateful Dead

McClain, Jordan January 2011 (has links)
This dissertation uses mass communication research about framing and positioning to explore media framing as brand positioning and analyze coverage that links the band Phish to the Grateful Dead. Based on content analysis, textual analysis, and interviews, this dissertation explores the framing of Phish--formed in Vermont in 1983 and often compared or connected to the Grateful Dead, a band formed in California in 1965-- in a popular mainstream music magazine and beyond, placing particular interest in how this framing intersects with positioning the band vis-à-vis the Grateful Dead. By exploring framing of a commercially-oriented subject that media coverage regularly constructs in terms of or in relation to another more recognizable subject, this project aims to contribute to mass communication theory and our understanding of media in society. Through comprehension of media about Phish and Phish/Grateful Dead connections, this dissertation studies how, why, and with what result stories are told through such associative coverage. After reviewing previous works regarding Phish, positioning, and framing, media content is closely examined and discussed. A case study of Phish coverage employed a three-pronged multi-method approach focusing on content (Part A) and context (Part B). Part A1 is a content analysis of all Phish album reviews from Rolling Stone. This included 12 album reviews spanning from 1995-2009 and written by eight authors. Findings showed that the majority of reviews connected Phish to the Grateful Dead, that the connections were constructed through various link forms, and that Phish were connected most to the Grateful Dead. Part A2 is a textual analysis of all Rolling Stone coverage of Phish. This included coverage from 1992-2010 and 305 items such as magazine covers, articles, and letters to the editor. Findings identified five frames and four subframes used to portray Phish. Part B is a series of interviews involving a primary group of 19 individuals who have significantly written, edited, and/or published content about Phish; and a secondary group of five individuals who added valuable context for understanding the issues. Findings included discussion of media conventions in general (journalistic) and specific (Phish) terms, and interpretation of the Phish/Grateful Dead link as a powerful, oversimplified reference point. About Phish, the project found they are an entity that innately defies standard molds and thus makes for an extraordinary and fruitful case study. Their naturally complex nature and paradoxical success makes them a potentially perplexing challenge for people in media to understand and address. Media often use the Grateful Dead motif in Phish coverage as a potent method of information assimilation to reconceive simply Phish's unusual combination of characteristics via something more familiar and accessible. In terms of the literature, the collection of media content illustrates framing of the band via socially shared and persistent organizing principles that symbolically structure Phish's character (Reese, 2003). The collection of content also illustrates positioning of Phish through portrayals that are often oversimplified and relate new information to familiar knowledge. The combination of literature on framing and positioning offers a productive explanation of media coverage about Phish, since both processes overlap in their tendency to oversimplistically relate X to Y. Thus, this dissertation's findings suggest a new way of thinking about cumulative media framing's ability to result in and serve as brand positioning, which may happen out of a brand's design. / Mass Media and Communication
452

Simulation of controlled rolling in two Ti HSLA steels

Liu, Weijie. January 1983 (has links)
No description available.
453

Residual stress hole drilling of elastic anisotropic commercially pure titanium

Sanchez Archuleta, Zachary J. 28 May 2024 (has links)
Residual stress measurement methods have commonly been used to characterize states of stress in various elastic isotropic materials. In order to investigate the effects of elastic anisotropy on residual stress measurements, commercially pure grade 2 titanium (CP Ti Gr 2) was selected to study a strong texture, or preferred grain orientation. Warm rolled and air-cooled CP titanium is well known to have a texture from the factory. This texture and resulting elastic anisotropy were confirmed using two material characterization methods, resonant ultrasound spectroscopy (RUS) and electron backscatter diffraction (EBSD). The texture was further developed using a rolling mill to cold roll the titanium. A vacuum furnace set to a temperature of 550 C for one hour was used to stress relieve the titanium without reducing the texture. RUS and EBSD methods were used again to confirm the texture achieved by cold rolling. Well-characterized residual stresses were introduced with a shrink-fit ring and plug. The residual stress hole drilling method was used to characterize stresses in the rolling and transverse directions of the ring and plug assemblies. Stress profiles from hole drilling indicated some possible elastic anisotropic effects in two assemblies and are presented. However, more assemblies are needed to confirm the results. A stress determination technique with higher sensitivity may be necessary to substantiate assembly stress profile results.
454

Development of nucleic acid therapeutics based on the control of their intracellular distribution / 細胞内動態制御を基盤とした核酸医薬品開発に関する研究

Umemura, Keisuke 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(薬学) / 甲第24563号 / 薬博第861号 / 新制||薬||243(附属図書館) / 京都大学大学院薬学研究科薬学専攻 / (主査)教授 髙倉 喜信, 教授 山下 富義, 教授 小野 正博 / 学位規則第4条第1項該当 / Doctor of Pharmaceutical Sciences / Kyoto University / DFAM
455

Rolling circle amplification(RCA)法により調製される長鎖一本鎖DNA(lss-DNA)を利用した核酸構造体のドラッグデリバリーシステムへの応用に関する研究

伊藤, 公一 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(薬学) / 甲第23845号 / 薬博第852号 / 新制||薬||242(附属図書館) / 京都大学大学院薬学研究科薬学専攻 / (主査)教授 髙倉 喜信, 教授 山下 富義, 教授 小野 正博 / 学位規則第4条第1項該当 / Doctor of Pharmaceutical Sciences / Kyoto University / DFAM
456

Multiscale Modeling of Fatigue and Fracture in Polycrystalline Metals, 3D Printed Metals, and Bio-inspired Materials

Ghodratighalati, Mohamad 16 March 2020 (has links)
The goal of this research is developing a computational framework to study mechanical fatigue and fracture at different length scales for a broad range of materials. The developed multiscale framework is utilized to study the details of fracture and fatigue for the rolling contact in rails, additively manufactured alloys, and bio-inspired hierarchical materials. Rolling contact fatigue (RCF) is a major source of failure and a dominant cause of maintenance and replacements in many railways around the world. The highly-localized stress in a relatively small contact area at the wheel-rail interface promotes micro-crack initiation and propagation near the surface of the rail. 2D and 3D microstructural-based computational frameworks are developed for studying the rolling contact fatigue in rail materials. The method can predict RCF life and simulate crack initiation sites under various conditions. The results obtained from studying RCF behavior in different conditions will help better maintenance of the railways and increase the safety of trains. The developed framework is employed to study the fracture and fatigue behavior in 3D printed metallic alloys fabricated by selective laser melting (SLM) method. SLM method as a part of metal additive manufacturing (AM) technologies is revolutionizing the manufacturing sector and is being utilized across a diverse array of industries, including biomedical, automotive, aerospace, energy, consumer goods, and many others. Since experiments on 3D printed alloys are considerably time-consuming and expensive, computational analysis is a proper alternative to reduce cost and time. In this research, a computational framework is developed to study fracture and fatigue in different scales in 3D printed alloys fabricated by the SLM method. Our method for studying the fatigue at the microstructural level of 3D printed alloys is pioneering with no similar work being available in the literature. Our studies can be used as a first step toward establishing comprehensive numerical frameworks to investigate fracture and fatigue behavior of 3D metallic devices with complex geometries, fabricated by 3D printing. Composite materials are fabricated by combining the attractive mechanical properties of materials into one system. A combination of materials with different mechanical properties, size, geometry, and order of different phases can lead to fabricating a new material with a wide range of properties. A fundamental problem in engineering is how to find the design that exhibits the best combination of these properties. Biological composites like bone, nacre, and teeth attracted much attention among the researchers. These materials are constructed from simple building blocks and show an uncommon combination of high strength and toughness. By inspiring from simple building blocks in bio-inspired materials, we have simulated fracture behavior of a pre-designed composite material consisting of soft and stiff building blocks. The results show a better performance of bio-inspired composites compared to their building blocks. Furthermore, an optimization methodology is implemented into the designing the bio-inspired composites for the first time, which enables us to perform the bio-inspired material design with the target of finding the most efficient geometries that can resist defects in their structure. This study can be used as an effective reference for creating damage-tolerant structures with improved mechanical behavior. / Doctor of Philosophy / The goal of this research is developing a multiscale framework to study the details of fracture and fatigue for the rolling contact in rails, additively manufactured alloys, and bio-inspired hierarchical materials. Rolling contact fatigue (RCF) is a major source of failure and a dominant cause of maintenance and replacements in many railways around the world. Different computational models are developed for studying rolling contact fatigue in rail materials. The method can predict RCF life and simulate crack initiation sites under various conditions and the results will help better maintenance of the railways and increase the safety of trains. The developed model is employed to study the fracture and fatigue behavior in 3D printed metals created by the selective laser melting (SLM) method. SLM method as a part of metal additive manufacturing (AM) technologies is revolutionizing industries including biomedical, automotive, aerospace, energy, and many others. Since experiments on 3D printed metals are considerably time-consuming and expensive, computational analysis is a proper alternative to reduce cost and time. Our method for studying the fatigue at the microstructural level of 3D printed alloys can help to create more fatigue and fracture resistant materials. In the last section, we have studied fracture behavior in bio-inspired materials. A fundamental problem in engineering is how to find the design that exhibits the best combination of mechanical properties. Biological materials like bone, nacre, and teeth are constructed from simple building blocks and show a surprising combination of high strength and toughness. By inspiring from these materials, we have simulated fracture behavior of a pre-designed composite material consisting of soft and stiff building blocks. The results show a better performance of bio-inspired structure compared to its building blocks. Furthermore, an optimization method is implemented into the designing the bio-inspired structures for the first time, which enables us to perform the bio-inspired material design with the target of finding the most efficient geometries that can resist defects in their structure.
457

An Aerodynamic Model for Use in the High Angle of Attack Regime

Stagg, Gregory A. 11 August 1998 (has links)
Harmonic oscillatory tests for a fighter aircraft using the Dynamic Plunge--Pitch--Roll model mount at Virginia Tech Stability Wind Tunnel are described. Corresponding data reduction methods are developed on the basis of multirate digital signal processing. Since the model is sting mounted, the frequencies associated with sting vibration are included in balance readings thus a linear filter must be used to extract out the aerodynamic responses. To achieve this, a Finite Impulse Response (FIR) is designed using the Remez exchange algorithm. Based on the reduced data, a state–space model is developed to describe the unsteady aerodynamic characteristics of the aircraft during roll oscillations. For this model, we chose to separate the aircraft into panels and model the local forces and moments. Included in this technique is the introduction of a new state variable, a separation state variable which characterizes the separation for each panel. This new variable is governed by a first order differential equation. Taylor series expansions in terms of the input variables were performed to obtain the aerodynamic coefficients of the model. These derivatives, a form of the stability derivative approach, are not constant but rather quadratic functions of the new state variable. Finally, the concept of the model was expanded to allow for the addition of longitudinal motions. Thus, pitching moments will be identified at the same time as rolling moments. The results show that the goal of modeling coupled longitudinal and lateral–directional characteristics at the same time using the same inputs is feasible. / Master of Science
458

Enhancement of a Rolling Resistance Rig for Force and Moment Testing of Tires

Ramdasi, Surabhi Suhas 23 June 2016 (has links)
Tire testing has been one of the important aspects of the tire industry because it helps identify the tire behavior which further helps in improving the design of tires. It also helps automotive manufacturers choose the best tire for their automobiles. Indoor tire testing helps in relating the data better because of greater repeatability of the testing setup as compared to outdoor testing. This study focusses on modifying a rolling resistance machine to make it capable of force and moment and cleat testing along with the standard rolling resistance test. Additionally, the design of a mechanical loading mechanism (used to apply normal force on the tire) in place of the previous one using dead weights is also discussed. This study also talks about the structural and vibrational finite element analysis of a tire testing machine. Since the machine was designed to conduct different tire tests, different structural requirements of the tire positioning mechanism pertaining to each test were taken into consideration, and the structure was analyzed for maximum forces and moments acting on the assembly. Cleat testing subjects the tire as well as the structure to an impulse force which calls for the vibrational analysis of the assembly to avoid the structure from resonating. The design was modified to get it easily manufactured and assembled. These design changes and the aspects taken into consideration have also been discussed. / Master of Science
459

Tire Contact Patch Characterization through Finite Element Modeling and Experimental Testing

Mathews Vayalat, Thomas 04 October 2016 (has links)
The objective of this research is to provide an in-depth analysis of the contact patch behavior of a specific passenger car tire. A Michelin P205/60R15 tire was used for this study. Understanding the way the tire interacts with the road at various loads, inflation pressures and driving conditions is essential to optimizing tire and vehicle performance. The footprint shape and stress distribution pattern are very important factors that go into assessing the tire's rate of wear, the vehicle's fuel economy and has a major effect on the vehicle stability and control, especially under severe maneuvers. In order to study the contact patch phenomena and analyze these stresses more closely, a finite element (FE) tire model which includes detailed tread pattern geometry has been developed, using a novel reverse engineering process. In order to validate this model, an experimental process has been developed to obtain the footprint shape and contact pressure distribution. The differences between the experimental and the simulation results are discussed and compared. The validated finite element model is then used for predicting the 3D stress distribution fields at the contact patch. The predictive capabilities of the finite element tire model are also explored in order to predict the handling characteristics of the test tire under different maneuvers such as pure cornering and pure braking. / Master of Science
460

A Response Surface Exit Crown Model Built from the Finite Element Analysis of a Hot-Rolling Mill

Stewart, William Elliott 24 October 2011 (has links)
Nine independent and four dependent variables are used to build a response surface to calculate strip crown using the difference in the industry standard strip height measurements. The single element response surface in use provides the advantages of continuous derivatives and decouples rolling load from the determination of exit height. The data points to build the response surface are the product of a calibrated finite element model. The rolling dynamics in the finite element model creates a transient that requires nonlinear regression to find the system steady-state values. Weighted-least squares is used to build a response surface using isoparametric interpolation with the non-rectangular domain of the mill stands represented as a single element. The regression statistics, the 1-D projections, comparisons against other response surface models and the comparisons against an existing strip crown model are part the validation of the response surface generated. A four-high mill stand is modeled as a quarter-symmetry 3-D finite element model with an elastic-plastic material model. A comparison of the pressure distribution under the arc of contact with existing research supports the pressure distribution found with experiments conducted by Siebel and Lueg [16] and it also suggests the need for one improvement in the initial velocity for the strip in the finite element model. The strip exit heights show more sensitivity to change than strip exit crown in seven out of the nine independent variables, so a response surface built with the strip exit height is statistically superior to using the derived dependent variable strip exit crown. Sensitivity of strip exit crown and the strip exit heights to changes in work-roll crown are about equal. Backup-roll diameter sensitivity is small enough that oversampling for the mean trend has to be considered or ignore backup-roll altogether. Strip entry velocity is a new independent variable, unless the response surface is built from the derived variable, strip exit crown. A problem found is that the sensitivity of strip entry crown and work-roll crown requires a larger than typical incremental change to get a reliable measure of the change strip exit crown. A narrow choice of high and low strip entry crowns limits the usefulness of the final response surface. A recommendation is to consider the use of the strip cross-section as an exit crown predictor. / Master of Science

Page generated in 0.0297 seconds