1 |
Un nouveau mécanisme moléculaire de régulation du système ubiquitine-protéasome par séparation de phase liquide-liquideUriarte, Maxime 12 1900 (has links)
L'homéostasie cellulaire implique une régulation fine de la production ainsi que de l'élimination des protéines. La dérégulation de cette homéostasie entraîne des effets néfastes touchant de nombreuses voies de signalisation et de métabolisme et pouvant conduire à diverses maladies telles que le cancer ou la neurodégénérescence. De ce fait, la dégradation des protéines est un processus hautement contrôlé effectué par le système ubiquitine-protéasome (UPS) qui permet le ciblage, l’étiquetage et la dégradation des protéines mal repliées, endommagées ou en fin de vie. Le protéasome est un complexe multiprotéique vital présent dans toutes les cellules eucaryotes dont la biogenèse, la fonction de dégradation et la régulation dans le cytoplasme sont bien connues. Cependant, la fonction du protéasome dans le noyau, notamment en réponse au stress, est encore peu comprise. Les cellules ont développé de nombreux mécanismes adaptatifs en réponse à la variation de l'apport en nutriments comme l’augmentation de la dégradation et le recyclage des protéines. Chez l’humain, le protéasome est dégradé dans le cytoplasme par autophagie lors d’une privation de nutriments mais les mécanismes de régulation du protéasome nucléaire en réponse au stress métabolique restent peu connus.
Nous avons trouvé que le protéasome 26S et la sous-unité régulatrice PSME3 forment des foyers nucléaires dans différents types cellulaires de mammifère en réponse à une privation en nutriments. Les foyers, nommés SIPAN pour Starvation-Induced Proteasome Assemblies in the Nucleus, ne sont colocalisés avec aucune structure ou corps nucléaires connus. La formation des SIPAN est réversible lors d’une réintégration des nutriments, suggérant une réponse spécifique liée à un stress métabolique. La manipulation de la quantité d’acides aminés intracellulaire a révélé que les acides aminés non-essentiels jouent un rôle important dans la formation et la résolution des SIPAN. Une analyse métabolomique a permis de trouver des voies reliées au métabolisme des nucléotides et des acides aminés qui pourraient fournir des facteurs clés pour la dissipation des foyers du protéasome. Le fort dynamisme des SIPAN, la présence d’événements de fusion et leur instabilité vis-à-vis des conditions cellulaires suggèrent que les SIPAN résultent d’une séparation de phase liquide-liquide (LLPS). De plus, nous avons trouvé que l’ubiquitine conjuguée est présente dans les SIPAN et que l’ubiquitination et la déubiquitination semblent être impliquées dans la formation et la résolution, respectivement. Nous avons ensuite découvert que la perte du récepteur à l’ubiquitine RAD23B empêche la formation des SIPAN. En effet, les domaines de liaison au protéasome UBL et de liaison à l’ubiquitine UBA1/UBA2 sont nécessaires pour la formation des SIPAN. De manière intéressante, la perte de RAD23B ou du complexe régulateur PSME3 retarde l’induction de l’apoptose et promeut la survie cellulaire. Enfin, en utilisant un inducteur de l’apoptose, nous avons observé l’apparition de ces foyers du protéasome dans le noyau des cellules dont certaines caractéristiques sont similaires aux SIPAN.
Notre étude aborde une question très importante dans la compréhension des rôles et du dynamisme du protéasome nucléaire, en particulier dans l'adaptation au stress, qui peut réguler le niveau des protéines nucléaires. De façon générale, cela nous aidera à mieux comprendre le rôle du protéasome dans l’homéostasie nucléaire et son implication dans les maladies humaines. / Cellular homeostasis involves specific regulation of the production as well as the elimination of proteins. The deregulation of this equilibrium leads to harmful effects affecting many signaling and metabolic pathways and can lead to various diseases, such as cancer or neurodegeneration. Hence, protein degradation is a highly controlled process performed by the ubiquitin-proteasome system (UPS) that allows targeting, labeling and degradation of misfolded, damaged, or end-of-life proteins. The proteasome is a vital multiprotein complex found in all eukaryotic cells whose biogenesis, degradative function, and regulation in the cytoplasm are well known. However, the function of the proteasome in the nucleus, particularly in response to stress, is still poorly understood. Cells have evolved many adaptive mechanisms in response to varying nutrient supply such as increased protein degradation and recycling. In humans, the proteasome is degraded in the cytoplasm by autophagy during nutrient deprivation, but the regulatory mechanisms of the nuclear proteasome in response to metabolic stress remain poorly understood.
We have found that the 26S proteasome and regulatory subunit PSME3 form nuclear foci in different mammalian cell types in response to nutrient deprivation. These foci, called SIPAN for Starvation-Induced Proteasome Assemblies in the Nucleus, do not colocalize with any known nuclear structures or bodies. The formation of SIPAN is reversible upon nutrient replenishment, suggesting a specific response to metabolic stress. Manipulation of the intracellular amino acid pool revealed that non-essential amino acids play important roles in the formation and resolution of SIPAN. A metabolomics study has identified pathways related to nucleotide and amino acid metabolism that may provide key factors for the dissipation of the proteasome foci. The strong dynamism of SIPAN, the presence of fusion events and their instability towards cellular conditions suggest that SIPAN result from liquid-liquid phase separation (LLPS). Additionally, we have found that conjugated ubiquitin is present in SIPAN and that ubiquitination and deubiquitination appear to be involved in their formation and resolution, respectively. We then discovered that the depletion of the ubiquitin receptor RAD23B prevents the formation of SIPAN. Indeed, the UBL proteasome binding domain and UBA1/UBA2 ubiquitin binding domains are required for SIPAN formation. Interestingly, the depletion of RAD23B or the proteasome regulatory particle PSME3 delays the induction of apoptosis and promotes cell survival. Finally, we found that an apoptosis-inducing agent promotes proteasome foci formation in the nucleus of cells, and these organelles share similarities with SIPAN.
Our study addresses a very important question in understanding the roles and dynamism of the proteasome in the nucleus, specifically during stress adaptation, which can regulate the level of nuclear proteins. In general, this will help us to better understand the role of the proteasome in nuclear homeostasis and its involvement in human diseases.
|
2 |
Rôle du système ubiquitine protéasome dans les séparations de phase nucléairesSen Nkwe Dibondo, Nadine 04 1900 (has links)
Le système ubiquitine-protéasome représente une plateforme de signalisation cellulaire chez les eucaryotes et joue un rôle majeur dans la coordination des processus cellulaires. Des progrès récents suggèrent que l’ubiquitination joue un rôle important dans les phénomènes de séparation de phase liquide-liquide (LLPS), un processus permettant la localisation d’une quantité accrue de protéines dans un compartiment subcellulaire, afin de réaliser une fonction biologique. En effet, il a été démontré que l’ubiquitination joue un rôle central dans les mécanismes qui gouvernent la LLPS durant la formation des granules de stress dans le cytoplasme ou les foci de réparation de l’ADN dans le noyau. D’autre part, chez la levure, des travaux ont montré que le protéasome est capable de s’assembler sous forme de granules dans le cytoplasme suite à un stress métabolique. Toutefois, les mécanismes par lesquels le système ubiquitine-protéasome ainsi que ses régulateurs contrôlent les processus de LLPS restent à déterminer.
Dans la première étude de cette thèse, nous avons investigué le mécanisme d’action de la déubiquitinase USP16, qui a été suggérée comme un régulateur négatif de la LLPS, empêchant la formation des foci de réparations de dommages à l’ADN. Cependant, nos résultats démontrent que USP16 est majoritairement cytoplasmique et que seulement une entrée forcée de USP16 dans le noyau empêche la formation des foci de réparation des cassures double brin induites par des radiations ionisagntes et ce en favorisant la déubiquitination de l’histone H2A. De plus, aucune translocation nucléaire de USP16 n’a été observée durant le cycle cellulaire ou suite à des dommages à l’ADN. Nos travaux montrent que USP16 est activement exclue du noyau via son signal d’export nucléaire et régulerait indirectement la LLPS menant à la formation des foci de réparation de l’ADN.
Dans la deuxième étude, nous décrivons le comportement dynamique des protéines du protéasome lors d’une LLPS induite par un stress métabolique. Nos résultats indiquent que le protéasome forme des foci distincts dans le noyau des cellules humaines en réponse à une privation de nutriments. Nous avons constaté que ces foci sont enrichis en ubiquitine conjuguée et nous avons démontré que le récepteur d’ubiquitine Rad23B ainsi que l’absence des acides aminés non essentiels sont des éléments clés nécessaires à l’assemblage de ces foci du
iv
protéasome. De plus, des expériences de survie cellulaire montrent que la présence de ces foci est associée à la mort des cellules par apoptose.
En conclusion, nos travaux mettent en lumière l’importance du système ubiquitine-protéasome dans la formation et la régulation des foci cellulaires suite à une LLPS. De même, cette étude aidera également à approfondir notre compréhension sur les mécanismes qui gouvernent l’homéostasie des protéines, la survie cellulaire et le développement du cancer. / The ubiquitin-proteasome system represents a major cell-signaling platform in eukaryotes and plays a pivotal role in the coordination of cellular processes. Recent studies provided evidence that ubiquitination plays a role in liquid-liquid phase separation (LLPS), a process that results in the localization of highly increased levels of a protein in a defined subcellular compartment, in order to achieve a biological function. Indeed, ubiquitination has been shown to play a central role in the mechanisms that govern LLPS and subsequent formation of stress granules in the cytoplasm or the DNA repair foci in the nucleus. On the other hand, several studies have shown that the proteasome itself is able to form granules in the cytoplasm following metabolic stress in yeasts. However, the mechanisms by which the ubiquitin-proteasome system and its regulators control LLPS processes remain to be determined. In the first study of this thesis, we investigated the mechanism of action of USP16 deubiquitinase, which has been suggested as a negative regulator of LLPS preventing the formation of DNA damage repair foci. However, our results demonstrate that USP16 is predominantly cytoplasmic and that only enforced nuclear entry of USP16 prevents the formation of repair foci after double strand breaks induced by ionizing radiation, and this by promoting the deubiquitination of histone H2A. In addition, no nuclear translocation of USP16 was observed during cell cycle or following DNA damage. Our study shows that USP16 is actively excluded from the nucleus via its nuclear export signal and would indirectly regulate LLPS that lead to DNA repair foci. In the second study, we describe the dynamic behavior of proteasome proteins during metabolic stress, a process that involves LLPS. Our results indicate that the proteasome forms distinct foci in the nucleus of human cells in response to nutrients deprivation. We found that these foci are enriched with conjugated ubiquitin and demonstrated that the ubiquitin receptor Rad23B as well as the absence of nonessential amino acids are the key elements necessary for the assembly of these proteasome foci. In addition, cell survival experiments show that the presence of these foci is associated with cell death by apoptosis. In conclusion, our work has shed new light on the importance of the ubiquitin-proteasome system in the formation and regulation of cell foci following LLPS. Likewise, this
vi
study will also help deepen our understanding of the mechanisms leading to protein homeostasis, cell survival and cancer development.
|
Page generated in 0.0259 seconds