• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 136
  • 61
  • Tagged with
  • 197
  • 189
  • 163
  • 163
  • 159
  • 158
  • 156
  • 33
  • 27
  • 25
  • 24
  • 20
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional Magnetic Resonance Imaging for Clinical Diagnosis : Exploring and Improving the Examination Chain

Ragnehed, Mattias January 2009 (has links)
Functional Magnetic Resonance Imaging (fMRI) is a relatively new imaging technique, first reported in 1992, which enables mapping of brain functions with high spatial resolution. Functionally active areas are distinguished by a small signal increase mediated by changes in local blood oxygenation in response to neural activity. The ability to non-invasively map brain function and the large number of MRI scanners quickly made the method very popular, and fMRI have had a huge impact on the study of brain function, both in healthy and diseased subjects. The most common clinical application of fMRI is pre-surgical mapping of brain functions in order to optimise surgical interventions. The clinical fMRI examination procedure can be divided into four integrated parts: (1) patient preparation, (2) image acquisition, (3) image analysis and (4) clinical decision. In this thesis, important aspects of all parts of the fMRI examination procedure are explored with the aim to provide recommendations and methods for prosperous clinical usage of the technique. The most important results of the thesis were: (I) administration of low doses of diazepam to reduce anxiety did not invalidate fMRI mapping results of primary motor and language areas, (II) the choice of visual stimuli equipment can have severe impact on the mapping of visual areas, (III) three-dimensional fMRI imaging sequences did not perform better than two-dimensional imaging sequences, (IV) adaptive spatial filtering can improve the fMRI data analysis, (V) clinical decisions should not be based on activation results from a single statistical threshold.
2

Calculation of scatter in cone beam CT : Steps towards a virtual tomograph

Malusek, Alexandr January 2008 (has links)
Scattered photons—shortly scatter—are generated by interaction processes when photon beams interact with matter. In diagnostic radiology, they deteriorate image quality since they add an undesirable signal that lowers the contrast in projection radiography and causes cupping and streak artefacts in computed tomography (CT). Scatter is one of the most detrimental factors in cone beam CT owing to irradiation geometries using wide beams. It cannot be fully eliminated, nevertheless its amount can be lowered via scatter reduction techniques (air gaps, antiscatter grids, collimators) and its effect on medical images can be suppressed via scatter correction algorithms. Aim: Develop a tool—a virtual tomograph—that simulates projections and performs image reconstructions similarly to a real CT scanner. Use this tool to evaluate the effect of scatter on projections and reconstructed images in cone beam CT. Propose improvements in CT scanner design and image reconstruction algorithms. Methods: A software toolkit (CTmod) based on the application development framework ROOT was written to simulate primary and scatter projections using analytic and Monte Carlo methods, respectively. It was used to calculate the amount of scatter in cone beam CT for anthropomorphic voxel phantoms and water cylinders. Configurations with and without bowtie filters, antiscatter grids, and beam hardening corrections were investigated. Filtered back-projection was used to reconstruct images. Automatic threshold segmentation of volumetric CT data of anthropomorphic phantoms with known tissue compositions was tested to evaluate its usability in an iterative image reconstruction algorithm capable of performing scatter correction. Results: It was found that computer speed was the limiting factor for the deployment of this method in clinical CT scanners. It took several hours to calculate a single projection depending on the complexity of the geometry, number of simulated detector elements, and statistical precision. Data calculated using the CTmod code confirmed the already known facts that the amount of scatter is almost linearly proportional to the beam width, the scatter-to-primary ratio (SPR) can be larger than 1 for body-size objects, and bowtie filters can decrease the SPR in certain regions of projections. Ideal antiscatter grids significantly lowered the amount of scatter. The beneficial effect of classical antiscatter grids in cone beam CT with flat panel imagers was not confirmed by other researchers nevertheless new grid designs are still being tested. A simple formula estimating the effect of scatter on the quality of reconstructed images was suggested and tested. Conclusions: It was shown that computer simulations could calculate the amount of scatter in diagnostic radiology. The Monte Carlo method was too slow for a routine use in contemporary clinical practice nevertheless it could be used to optimize CT scanner design and, with some enhancements, it could become a part of an image reconstruction algorithm that performs scatter correction.
3

Magnetic Resonance Imaging of the Hepatobiliary System Using Hepatocyte-Specific Contrast Media / Magnetresonanstomografi av lever och gallvägar med levercellsspecifika kontrastmedel

Dahlström, Nils January 2009 (has links)
<p>There are two Gadolinium-based liver-specific contrast media for Magnetic Resonance Imaging on the market, Gd-BOPTA (MultiHance®, Bracco Imaging, Milan, Italy) and Gd-EOB-DTPA (Primovist®, Bayer Schering Pharma, Berlin, Germany). The aim of this study in two parts was to evaluate the dynamics of biliary, parenchymal and vascular enhancement using these contrast media in healthy subjects. Ten healthy volunteers were examined in a 1.5 T magnetic resonance system using three-dimensional Volumetric Interpolated Breath-Hold (VIBE) sequences for dynamic imaging with both contrast media – at two different occasions – until five hours after injection. The doses given were 0.025 mmol/kg for Gd-EOB-DTPA and 0.1 mmol/kg for Gd-BOPTA. The enhancement over time of the common biliary duct in contrast to the liver parenchyma was analyzed in the first study. This was followed by a study of the image contrasts of the hepatic artery, portal vein and middle hepatic vein versus the liver parenchyma.While Gd-EOB-DTPA gave an earlier and more prolonged enhancement of the biliary duct, Gd-BOPTA achieved higher image contrast for all vessels studied, during the arterial and portal venous phases. There was no significant difference in the maximal enhancement obtained in the liver parenchyma.At the obtained time-points and at the dosage used, the high contrast between the common biliary duct and liver parenchyma had an earlier onset and longer duration for Gd-EOB-DTPA, while Gd-BOPTA achieved higher maximal enhancement of the hepatic artery, portal vein and middle hepatic vein than Gd-EOB-DTPA. Diseases of the liver and biliary system may affect the vasculature, parenchyma, biliary excretion or a combination of these. The clinical context regarding the relative importance of vascular, hepatic parenchymal and biliary processes should determine the choice of contrast media for each patient and examination.</p><p> </p>
4

Perfusion measurements by dynamic susceptibility MRI

Morell, Arvid January 2010 (has links)
No description available.
5

Magnetic Resonance Imaging of the Hepatobiliary System Using Hepatocyte-Specific Contrast Media / Magnetresonanstomografi av lever och gallvägar med levercellsspecifika kontrastmedel

Dahlström, Nils January 2009 (has links)
There are two Gadolinium-based liver-specific contrast media for Magnetic Resonance Imaging on the market, Gd-BOPTA (MultiHance®, Bracco Imaging, Milan, Italy) and Gd-EOB-DTPA (Primovist®, Bayer Schering Pharma, Berlin, Germany). The aim of this study in two parts was to evaluate the dynamics of biliary, parenchymal and vascular enhancement using these contrast media in healthy subjects. Ten healthy volunteers were examined in a 1.5 T magnetic resonance system using three-dimensional Volumetric Interpolated Breath-Hold (VIBE) sequences for dynamic imaging with both contrast media – at two different occasions – until five hours after injection. The doses given were 0.025 mmol/kg for Gd-EOB-DTPA and 0.1 mmol/kg for Gd-BOPTA. The enhancement over time of the common biliary duct in contrast to the liver parenchyma was analyzed in the first study. This was followed by a study of the image contrasts of the hepatic artery, portal vein and middle hepatic vein versus the liver parenchyma.While Gd-EOB-DTPA gave an earlier and more prolonged enhancement of the biliary duct, Gd-BOPTA achieved higher image contrast for all vessels studied, during the arterial and portal venous phases. There was no significant difference in the maximal enhancement obtained in the liver parenchyma.At the obtained time-points and at the dosage used, the high contrast between the common biliary duct and liver parenchyma had an earlier onset and longer duration for Gd-EOB-DTPA, while Gd-BOPTA achieved higher maximal enhancement of the hepatic artery, portal vein and middle hepatic vein than Gd-EOB-DTPA. Diseases of the liver and biliary system may affect the vasculature, parenchyma, biliary excretion or a combination of these. The clinical context regarding the relative importance of vascular, hepatic parenchymal and biliary processes should determine the choice of contrast media for each patient and examination.
6

Konventionell röntgen versus datortomografi vid pelvimetri : -En systematisk litteraturstudie / Conventional x-ray versus computer tomography on pelvimetry

Borg, Anton, Padjen, Haris January 2017 (has links)
No description available.
7

Hälsoeffekter hos MR-personal vid exponering av magnetfält : En litteraturstudie / Health effects to MRI-personnel when exposed to magnetic fields : A literature study

Andersson, Amanda, Wallenborg, Jenny January 2019 (has links)
No description available.
8

Image Analysis and Visualization of the Human Mastoid Air Cell System

Cros, Olivier January 2015 (has links)
From an engineering background, it is often believed that the human anatomy has already been fully described. Radiology has greatly contributed to understand the inside of the human body without surgical intervention. Despite great advances in clinical CT scanning, image quality is still related to a limited amount X-ray exposure for the patient safety. This limitation prevents fine anatomical structures to be visible and, more importantly, to be detected. Where such modality is of great advantage for screening patients, extracting parameters like surface area and volume implies the bone structure to be large enough in relation to the scan resolution. The mastoid, located in the temporal bone, houses an air cell system whose cells have a variation in size that can go far below current conventional clinical CT scanner resolution. Therefore, the mastoid air cell system is only partially represented on a CT scan. Any statistical analysis will be biased towards air cells of smaller size. To allow a complete representation of the mastoid air cell system, a micro-CT scanner is more adequate. Micro-CT scanning uses approximately the same amount of X-rays but for a much longer exposure time compared to what is normally allowed for patients. Human temporal bone specimens are therefore necessary when using such scanning method. Where the conventional clinical CT scanner lacks level of minutes details, micro-CT scanning provides an overwhelming amount of fine details. Prior to any image analysis of medical data, visualization of the data is often needed to learn how to extract the structures of interest for further processing. Visualization of micro-CT scans is of no exception. Due to the high resolution nature of the data, visualization of such data not only requires modern and powerful computers, but also necessitates a tremendous amount of time to adjust the hiding of irrelevant structures, to find the correct orientation, while emphasising the structure of interest. Once the quality of the data has been assessed, and a strategy for the image processing has been decided, the image processing can start, to in turn extract metrics such as the surface area or volume and draw statistics from it. The temporal bone being one of the most complex in the human body, visualization of micro-CT scanning of this bone awakens the curiosity of the experimenter, especially with the correct visualization settings. This thesis first presents a statistical analysis determining the surface area to volume ratio of the mastoid air cell system of human temporal bone, from micro-CT scanning using methods previously applied for conventional clinical CT scannings. The study compared current resul s with previous studies, with successive downsampling the data down to a resolution found in conventional clinical CT scanning. The results from the statistical analysis showed that all the small mastoid air cells, that cannot be detected in conventional clinical CT scans, do heavily contribute to the estimation of the surface area, and in consequence to the estimation of the surface area to volume ratio by a factor of about 2.6. Such a result further strengthens the idea of the mastoid to play an active role in pressure regulation and gas exchange. Discovery of micro-channels through specific use of a non-traditional transfer function was then reported, where a qualitative and a quantitative preanalysis was performed are described. To gain more knowledge about these micro-channels, a local structure tensor analysis was applied where structures are described in terms of planar, tubular, or isotropic structures. The results from this structural tensor analysis, also reported in this thesis, suggest these micro-channels to potentially be part of a more complex framework, which hypothetically would provide a separate blood supply for the mucosa lining the mastoid air cell system.
9

Radiological Studies on Hippocampal Development : Morphological Variants and their Relationship to Epilepsy

Bajic, Dragan January 2010 (has links)
During fetal development, the hippocampal structures are folded forming the hippocampal sulcus which penetrates into the temporal lobe and then the entity rotates.  During this process, the hippocampal sulcus will be closed and the inverted hippocampus takes a rounded form. After complete inversion, the hippocampus has an oval form in a plane perpendicular to its long axis. If this process has not been completed the hippocampus remains the rounded form. That condition is called incomplete hippocampal inversion (IHI). The aims of this study was to evaluate the frequency of IHI in non-epileptic and epileptic children and adults and to explore the development of the hippocampal region by studying premature neonates and fetuses. Magnetic resonance (MR) images of 201 epilepsy patients and 150 non-epileptic subjects were evaluated without knowing clinical data. IHI was found in 19 % in seizure free controls (20 left-sided and 8 bilateral). 30% of the 201 epilepsy patients had IHI (40 left-sided, 4 right-sided, 16 bilateral). The difference was statistically significant (p&lt;0.02). 25% of the temporal lobe epilepsy patients had IHI. The frequency was not significantly higher than in controls. There is no causality between temporal lobe epilepsy and IHI. 44% of the Rolandic epilepsy patients and 57% of the cryptogenic generalized epilepsy patients had IHI. IHI can be a sign of possible disturbed cerebral development in other parts of the brain. Cranial ultrasound examinations of 160 premature children were analyzed. The age at examination was 23-24 GW in 24 children, 25-28 GW in 72 children, and 29-36 GW in 64 children. IHI was found in 50%, 25% and 14%, respectively. The frequency difference between the children &lt; 25 GW and &gt; 25 GW was statistically significant (p&lt; 0.001). From 25 GW onwards, the frequency and laterality of IHI is similar to that in the adult population. MRIs of 63 fetuses without intracranial pathology were reviewed independently by two radiologists. Three MRIs were performed post mortem at gestation week (GW) 17-18 and 60 in utero at GW 19-35. The hippocampal sulcus was open, bi- or unilaterally, in 35 fetuses at GW 17-32. The oldest of them was at GW 32.  The sulcus was closed at GW 21 at the earliest, unilaterally, and always from GW 33 onwards bilaterally. In 26/63 fetuses (41%), the hippocampal development was asymmetric and in 23 fetuses, the right side had developed faster.
10

Två metoder för att påvisa lungemboli : En litteraturstudie

Ådemark, Belisa January 2012 (has links)
Sammanfattning I Sverige drabbas ca 10000 personer årligen av lungemboli (LE). En vanlig bakomliggande orsak till LE är djup ventrombos. Tromboserna brukar vanligen sitta i benets eller bäckenets djupa vener. För att påvisa LE krävs att patienten genomgår olika radiologiska metoder såsom t.ex. datortomografi (DT) eller lungscintigrafi. Syftet med denna studie är att beskriva radiologiska metodval vid utredning av LE, för- och nackdelar med de olika metoderna och i vilka fall respektive metod föredras.  I databasen Pubmed söktes vetenskapliga artiklar som analyserar vilken av de radiologiska metoderna som föredras vid LE. Åtta artiklar valdes ut. Båda metoderna, DT och lungscintigrafi, är viktiga för att ställa diagnos vid misstänkt LE.  DT är den metod som väljs som förstahandsmetod, detta på grund av stor tillgänglighet och snabbhet, vilket är en stor fördel. Lungscintigrafiteknik bör dock inte uteslutas eftersom de båda metoderna kan komplettera varandra.

Page generated in 0.0447 seconds