• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 10
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 46
  • 14
  • 12
  • 10
  • 10
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Molecular and morphological characterisation of species of \kur{Plagiorchis} Lühe, 1899 (Digenea: Plagiorchiidae) in lymnaeid snails from freshwater ecosystems in central Europe

ROHÁČOVÁ, Jana January 2014 (has links)
This study applies molecular and morphological approaches addressing the identification of morphologically similar larval stages (cercariae) of Plagiorchis spp. (Digenea: Plagiorchiidae) parasitising lymnaeid snail populations in the freshwater ecosystems of central Europe. Five morphologically homogeneous and genetically distinct lineages of Plagiorchis spp. were identified via matching molecular data for the mitochondrial cox1 gene with detailed morphometric data. Phylogenetic and comparative sequence analyses using partial 28S rDNA and ITS1-5.8S-ITS2 sequences allowed molecular identification of three species (P. elegans, P. maculosus and P. koreanus) via matching sequences from larval and adult digenean stages. A key for the identification of the cercariae of Plagiorchis spp. parasitising lymnaeid populations in central Europe is provided.
22

Mineração multirrelacional de regras de associação em grandes bases de dados

Oyama, Fernando Takeshi [UNESP] 22 February 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:29:40Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-02-22Bitstream added on 2014-06-13T20:39:07Z : No. of bitstreams: 1 oyama_ft_me_sjrp.pdf: 1107324 bytes, checksum: 0977db2af1589dece4aa46b5882d84d6 (MD5) / O crescente avanço e a disponibilidade de recursos computacionais viabilizam o armazenamento e a manipulação de grandes bases de dados. As técnicas típicas de mineração de dados possibilitam a extração de padrões desde que os dados estejam armazenados em uma única tabela. A mineração de dados multirrelacional, por sua vez, apresenta-se como uma abordagem mais recente que permite buscar padrões provenientes de múltiplas tabelas, sendo indicada para a aplicação em bases de dados relacionais. No entanto, os algoritmos multirrelacionais de mineração de regras de associação existentes tornam-se impossibilitados de efetuar a tarefa de mineração em grandes volumes de dados, uma vez que a quantia de memória exigida para a conclusão do processamento ultrapassa a quantidade disponível. O objetivo do presente trabalho consiste em apresentar um algoritmo multirrelacional de extração de regras de associação com o foco na aplicação em grandes bases de dados relacionais. Para isso, o algoritmo proposto, MR-RADIX, apresenta uma estrutura denominada Radix-tree que representa comprimidamente a base de dados em memória. Além disso, o algoritmo utiliza-se do conceito de particionamento para subdividir a base de dados, de modo que cada partição possa ser processada integralmente em memória. Os testes realizados demonstram que o algoritmo MR-RADIX proporciona um desempenho superior a outros algoritmos correlatos e, ainda, efetua com êxito, diferentemente dos demais, a mineração de regras de associação em grandes bases de dados. / The increasing spread and availability of computing resources make feasible storage and handling of large databases. Traditional techniques of data mining allows the extraction of patterns provided that data is stored in a single table. The multi- relational data mining presents itself as a more recent approach that allows search patterns from multiple tables, indicated for use in relational databases. However, the existing multi-relational association rules mining algorithms become unable to make mining task in large data, since the amount of memory required for the completion of processing exceed the amount available. The goal of this work is to present a multi- relational algorithm for extracting association rules with focus application in large relational databases. For this the proposed algorithm MR-RADIX presents a structure called Radix-tree that represents compressly the database in memory. Moreover, the algorithm uses the concept of partitioning to subdivide the database, so that each partition can be processed entirely in memory. The tests show that the MR-RADIX algorithm provides better performance than other related algorithms, and also performs successfully, unlike others, the association rules mining in large databases.
23

Mineração multirrelacional de regras de associação em grandes bases de dados /

Oyama, Fernando Takeshi. January 2010 (has links)
Orientador: Carlos Roberto Valêncio / Banca: Cristina Dutra de Aguiar Ciferri / Banca: Rogéria Cristiane Gratão de Souza / Resumo: O crescente avanço e a disponibilidade de recursos computacionais viabilizam o armazenamento e a manipulação de grandes bases de dados. As técnicas típicas de mineração de dados possibilitam a extração de padrões desde que os dados estejam armazenados em uma única tabela. A mineração de dados multirrelacional, por sua vez, apresenta-se como uma abordagem mais recente que permite buscar padrões provenientes de múltiplas tabelas, sendo indicada para a aplicação em bases de dados relacionais. No entanto, os algoritmos multirrelacionais de mineração de regras de associação existentes tornam-se impossibilitados de efetuar a tarefa de mineração em grandes volumes de dados, uma vez que a quantia de memória exigida para a conclusão do processamento ultrapassa a quantidade disponível. O objetivo do presente trabalho consiste em apresentar um algoritmo multirrelacional de extração de regras de associação com o foco na aplicação em grandes bases de dados relacionais. Para isso, o algoritmo proposto, MR-RADIX, apresenta uma estrutura denominada Radix-tree que representa comprimidamente a base de dados em memória. Além disso, o algoritmo utiliza-se do conceito de particionamento para subdividir a base de dados, de modo que cada partição possa ser processada integralmente em memória. Os testes realizados demonstram que o algoritmo MR-RADIX proporciona um desempenho superior a outros algoritmos correlatos e, ainda, efetua com êxito, diferentemente dos demais, a mineração de regras de associação em grandes bases de dados. / Abstract: The increasing spread and availability of computing resources make feasible storage and handling of large databases. Traditional techniques of data mining allows the extraction of patterns provided that data is stored in a single table. The multi- relational data mining presents itself as a more recent approach that allows search patterns from multiple tables, indicated for use in relational databases. However, the existing multi-relational association rules mining algorithms become unable to make mining task in large data, since the amount of memory required for the completion of processing exceed the amount available. The goal of this work is to present a multi- relational algorithm for extracting association rules with focus application in large relational databases. For this the proposed algorithm MR-RADIX presents a structure called Radix-tree that represents compressly the database in memory. Moreover, the algorithm uses the concept of partitioning to subdivide the database, so that each partition can be processed entirely in memory. The tests show that the MR-RADIX algorithm provides better performance than other related algorithms, and also performs successfully, unlike others, the association rules mining in large databases. / Mestre
24

Decomposição de coeficientes trigonométricos para a redução de área e potência em arquiteturas FFT híbridas na base 2 / Trigonometric coefficients decomposition for area and power reduction in hybrid radix-2 FFT architectures

Ghissoni, Sidinei January 2012 (has links)
A crescente utilização de equipamentos móveis que empregam a transformada rápida de Fourier (FFT) nas operações de sinal digital pode ter seu uso restrito devido ao comprometimento da durabilidade da bateria e de suas dimensões. Estas possíveis limitações de uso fazem crescer a necessidade do desenvolvimento de técnicas que visam à otimização nos três requisitos básicos de projeto digital: dissipação de potência, área e atraso. Para tanto, é abordado neste trabalho um método que realiza a implementação de arquiteturas FFT com ênfase na otimização através da decomposição dos coeficientes trigonométricos. No cálculo da FFT, as borboletas desempenham um papel central, uma vez que permitem o cálculo de termos complexos. Neste cálculo, que envolve multiplicações dos dados de entrada com coeficientes trigonométricos apropriados, a otimização das borboletas pode contribuir diretamente para a redução de potência e área. Na técnica proposta são analisados quais são os coeficientes trigonométricos existentes na arquitetura FFT utilizada como base e a escolha para decomposição será o que apresentar o menor custo de implementação em hardware. A decomposição de um coeficiente deve garantir a reconstituição de todos os demais coeficientes necessários para a implementação de toda a arquitetura FFT. Assim, a decomposição diminui o número de coeficientes necessários para reconstruir a FFT original. O conjunto dos novos coeficientes gerados são implementados com apenas somadores\subtratores e deslocamentos através de Multiplicação de Matrizes Constantes (CMM – Constant Matrix Multiplication), associados a um sistema de controle com multiplexadores que controlam o caminho para a correta operação da FFT. As implementações dos circuitos somadores/subtratores são realizadas com métrica no nível de portas lógicas, visando menor atraso e dissipação de potência para topologias com somadores dos tipos CSA (Carry Save Adder) e Ripple carry. Os resultados apresentados pelo método proposto, quando comparados com soluções da literatura, são significativamente satisfatórios, pois minimizaram a dissipação de potência e área em 30% e 24% respectivamente. Os resultados apresentam também a redução de componentes somadores necessários para a implementação de arquiteturas FFTs. / The increasing use of mobile devices using the Fast Fourier Transform (FFT) operations in digital signal may have its use restricted due compromising the durability of the battery and its dimensions. These possible limitations on usage makes grow the need to develop techniques aimed at optimizing the three basic requirements of digital design: power dissipation, area and delay. Therefore, this thesis discusses a method that performs the FFT implementation of architectures with emphasis on optimization through decomposition of twiddle factors (trigonometric coefficients). In the FFT the butterflies play a key role, since it allows the computation of complex terms. In this calculation, which involves multiplications of input data with appropriate twiddle factors, optimization of the butterflies can contribute directly to the reduction in power and area. In the proposed technique are analyzed what are the twiddle factors existing in FFT architecture used as a basis and to choose the decomposition that provide the lowest cost hardware implementation. The decomposition of coefficient to must ensure the rebuilding of all the other twiddle factors necessary for the implementation of the architecture FFT. Thus, the decomposition decreases the number of twiddle factors needed to reconstruct the original FFT. The new sets of coefficients generated are implemented with only adders\subtracters and shifting through of Constants Matrix Multiplication (CMM). A control system of multiplexers makes the way for the correct operation of the FFT. The implementations of the circuits arithmetic adders/subtracters are performed at the gate level, seeking lower delay and power consumption for topologies with adders types of CSA (Carry Save Adder) and Ripple carry. The results presented by the proposed method, compared with literature solutions are significantly satisfactory, since minimized power dissipation and area as well as reduced component adders required for implementation architectures FFTs.
25

Decomposição de coeficientes trigonométricos para a redução de área e potência em arquiteturas FFT híbridas na base 2 / Trigonometric coefficients decomposition for area and power reduction in hybrid radix-2 FFT architectures

Ghissoni, Sidinei January 2012 (has links)
A crescente utilização de equipamentos móveis que empregam a transformada rápida de Fourier (FFT) nas operações de sinal digital pode ter seu uso restrito devido ao comprometimento da durabilidade da bateria e de suas dimensões. Estas possíveis limitações de uso fazem crescer a necessidade do desenvolvimento de técnicas que visam à otimização nos três requisitos básicos de projeto digital: dissipação de potência, área e atraso. Para tanto, é abordado neste trabalho um método que realiza a implementação de arquiteturas FFT com ênfase na otimização através da decomposição dos coeficientes trigonométricos. No cálculo da FFT, as borboletas desempenham um papel central, uma vez que permitem o cálculo de termos complexos. Neste cálculo, que envolve multiplicações dos dados de entrada com coeficientes trigonométricos apropriados, a otimização das borboletas pode contribuir diretamente para a redução de potência e área. Na técnica proposta são analisados quais são os coeficientes trigonométricos existentes na arquitetura FFT utilizada como base e a escolha para decomposição será o que apresentar o menor custo de implementação em hardware. A decomposição de um coeficiente deve garantir a reconstituição de todos os demais coeficientes necessários para a implementação de toda a arquitetura FFT. Assim, a decomposição diminui o número de coeficientes necessários para reconstruir a FFT original. O conjunto dos novos coeficientes gerados são implementados com apenas somadores\subtratores e deslocamentos através de Multiplicação de Matrizes Constantes (CMM – Constant Matrix Multiplication), associados a um sistema de controle com multiplexadores que controlam o caminho para a correta operação da FFT. As implementações dos circuitos somadores/subtratores são realizadas com métrica no nível de portas lógicas, visando menor atraso e dissipação de potência para topologias com somadores dos tipos CSA (Carry Save Adder) e Ripple carry. Os resultados apresentados pelo método proposto, quando comparados com soluções da literatura, são significativamente satisfatórios, pois minimizaram a dissipação de potência e área em 30% e 24% respectivamente. Os resultados apresentam também a redução de componentes somadores necessários para a implementação de arquiteturas FFTs. / The increasing use of mobile devices using the Fast Fourier Transform (FFT) operations in digital signal may have its use restricted due compromising the durability of the battery and its dimensions. These possible limitations on usage makes grow the need to develop techniques aimed at optimizing the three basic requirements of digital design: power dissipation, area and delay. Therefore, this thesis discusses a method that performs the FFT implementation of architectures with emphasis on optimization through decomposition of twiddle factors (trigonometric coefficients). In the FFT the butterflies play a key role, since it allows the computation of complex terms. In this calculation, which involves multiplications of input data with appropriate twiddle factors, optimization of the butterflies can contribute directly to the reduction in power and area. In the proposed technique are analyzed what are the twiddle factors existing in FFT architecture used as a basis and to choose the decomposition that provide the lowest cost hardware implementation. The decomposition of coefficient to must ensure the rebuilding of all the other twiddle factors necessary for the implementation of the architecture FFT. Thus, the decomposition decreases the number of twiddle factors needed to reconstruct the original FFT. The new sets of coefficients generated are implemented with only adders\subtracters and shifting through of Constants Matrix Multiplication (CMM). A control system of multiplexers makes the way for the correct operation of the FFT. The implementations of the circuits arithmetic adders/subtracters are performed at the gate level, seeking lower delay and power consumption for topologies with adders types of CSA (Carry Save Adder) and Ripple carry. The results presented by the proposed method, compared with literature solutions are significantly satisfactory, since minimized power dissipation and area as well as reduced component adders required for implementation architectures FFTs.
26

FPGA DESIGN OF A HARDWARE EFFICIENT PIPELINED FFT PROCESSOR

Bone, Ryan T. 24 October 2008 (has links)
No description available.
27

The Design, Simulation and Synthesis of Pipelined Floating-Point Radix-4 Fast Fourier Transform Data Path in VHDL

Nicklous, Francis Edward January 2010 (has links)
The Fast Fourier Transform (FFT) converts time or spatial information into the frequency domain. The FFT is one of the most widely used digital signal processing (DSP) algorithms. DSPs are used in a number of applications from communication and controls to speech and image processing. DSPs have also found their way into toys, music synthesizers and in most digital instruments. Many applications have relied on Digital Signal Processors and Application Specific Integrated Circuits (ASIC) for most of the signal processing needs. DSPs provide an adequate means of performance and efficiency for many applications as well as robust tools to ease the development process. However, the requirements of important emerging DSP applications have begun to exceed the capabilities of DSPs. With this in mind, system developers have begun to consider alternatives such as ASICs and Field Programmable Gate Arrays (FPGA). Although ASICs can provide excellent performance and efficiency, the time, cost and risk associated with the design of ASICs is leading developers towards FPGAs. A number of significant advances in FPGA technology have improved the suitability of FPGAs for DSP applications. These advances include increased device capacity and speed, DSP-oriented architectural enhancements, better DSP-oriented tools, and increasing availability of DSP-oriented IP libraries. The thesis research focuses on the design of a single precision floating-point radix-4 FFT FPGA using VHDL for real time DSP applications. The paper will go into further detail pertaining to the FFT algorithm used, the description of the design steps taken as well as the results from both simulation and synthesis. / Electrical and Computer Engineering
28

Security of Lightweight Cryptographic Primitives

Vennos, Amy Demetra Geae 10 June 2021 (has links)
Internet-of-Things (IoT) devices are increasing in popularity due to their ability to help automate many aspects of daily life while performing these necessary duties on billions of low-power appliances. However, the perks of these small devices also come with additional constraints to security. Security always has been an issue with the rise of cryptographic backdoors and hackers reverse engineering the security protocols within devices to reveal the original state that was encrypted. Security researchers have done much work to prevent attacks with high power algorithms, such as the international effort to develop the current Advanced Encryption Standard (AES). Unfortunately, IoT devices do not typically have the computational resources to implement high-power algorithms such as AES, and must rely on lightweight primitives such as pseudorandom number generators, or PRNGs.This thesis explores the effectiveness, functionality, and use of PRNGs in different applications. First, this thesis investigates the confidentiality of a single-stage residue number system PRNG, which has previously been shown to provide extremely high quality outputs for simulation and digital communication applications when evaluated through traditional techniques like the battery of statistical tests used in the NIST Random Number Generation and DIEHARD test suites or in using Shannon entropy metrics. In contrast, rather than blindly performing statistical analyses on the outputs of the single-stage RNS PRNG, this thesis provides both white box and black box analyses that facilitate reverse engineering of the underlying RNS number generation algorithm to obtain the residues, or equivalently the key, of the RNS algorithm. This thesis develops and demonstrate a conditional entropy analysis that permits extraction of the key given a priori knowledge of state transitions as well as reverse engineering of the RNS PRNG algorithm and parameters (but not the key) in problems where the multiplicative RNS characteristic is too large to obtain a priori state transitions. This thesis then discusses multiple defenses and perturbations for the RNS system that defeat the original attack algorithm, including deliberate noise injection and code hopping. We present a modification to the algorithm that accounts for deliberate noise, but rapidly increases the search space and complexity. Lastly, a comparison of memory requirements and time required for the attacker and defender to maintain these defenses is presented. The next application of PRNGs is in building a translation for binary PRNGs to non-binary uses like card shuffling in a casino. This thesis explores a shuffler algorithm that utilizes RNS in Fisher-Yates shuffles, and that calls for inputs from any PRNG. Entropy is lost through this algorithm by the use of PRNG in lieu of TRNG and by its RNS component: a surjective mapping from a large domain of size $2^J$ to a substantially smaller set of arbitrary size $n$. Previous research on the specific RNS mapping process had developed a lower bound on the Shannon entropy loss from such a mapping, but this bound eliminates the mixed-radix component of the original formulation. This thesis calculates a more precise formula which takes into account the radix, $n$. This formulation is later used to specify the optimal parameters to simulate the shuffler with different test PRNGs. After implementing the shuffler with PRNGs with varying output entropies, the thesis examines the output value frequencies to discuss if utilizing PRNG is a feasible alternative for casinos to the higher-cost TRNG. / Master of Science / Cryptography, or the encrypting of data, has drawn widespread interest for years, initially sparking public concern through headlines and dramatized reenactments of hackers targeting security protocols. Previous cryptographic research commonly focused on developing the quickest, most secure ways to encrypt information on high-power computers. However, as wireless low-power devices such as smart home, security sensors, and learning thermostats gain popularity in ordinary life, interest is rising in protecting information being sent between devices that don't necessarily have the power and capabilities as those in a government facility. Lightweight primitives, the algorithms used to encrypt information between low-power devices, are one solution to this concern, though they are more susceptible to attackers who wish to reverse engineer the encrypting process. The pesudorandom number generator (PRNG) is a type of lightweight primitive that generates numbers that are essentially random even though it is possible to determine the input value, or seed, from the resulting output values. This thesis explores the effectiveness and functionality of PRNGs in different applications. First, this thesis explores a PRNG that has passed many statistical tests to prove its output values are random enough for certain applications. This project analyzes the quality of this PRNG through a new lens: its resistance to reverse engineering attacks. The thesis describes and implements an attack on the PRNG that allows an individual to reverse engineer the initial seed. The thesis then changes perspective from attacker to designer and develop defenses to this attack: by slightly modifying the algorithm, the designer can ensure that the reverse engineering process is so complex, time-consuming, and memory-requiring that implementing such an attack would be impractical for an attacker. The next application of PRNGs is in the casino industry, in which low-power and cost-effective automatic card shufflers for games like poker are becoming popular. This thesis explores a solution for optimal shuffling of a deck of cards.
29

Mechanism of anti-influenza virus activity of Maillard reaction products derived from Isatidis roots

Ke, Lijing January 2011 (has links)
The cyto-protective compositions and effects of antiviral Maillard reaction products (MRPs) derived from roots of Isatis indigotica F. were examined using biochemical and biophysical methods. The Maillard reaction was identified as the main source of compounds with antiviral activity, an observation which has led to the proposal of a new class of active compounds that protect cells from influenza virus infection. In the roots, arginine and glucose were revealed to be the predominant reactants for the Maillard reaction. Significant anti-influenza virus effects were demonstrated in the RIE MRPs derived from the roots (RIE refers to the ‘radix Isatidis extracts’), and in Arg-Glc MRPs which are synthesised with arginine and glucose. Arg-Glc MRPs were confirmed as suitable models for the study of the antiviral effects of the root extracts. Furthermore, RIE MRPs and Arg-Glc MRPs were found to bind to the plasma membranes of erythrocytes and MDCK cells, and altered their properties. A novel antiviral mechanism was proposed: that MRPs achieve their cyto-protective effects by binding to the cell membrane rather than by direct action on viral particles. To validate the proposed mechanism, the interaction between MRPs and membrane lipids was investigated by biophysical experiments with phospholipids bilayers. Arg-Glc MRPs affected the rigidity of lipid packing in monolayers and bilayers, while RIE MRPs enhanced the fluidity. Both types of MRPs inserted into the hydrophobic core of bilayers, to differing extents, and induced the stabilisation or destabilisation of bilayers in a concentrationdependent manner. At certain concentrations, MRPs prevented the lamellar structure of bilayers from being destabilised by a viral fusion peptide, improved the lipid order and thereby inhibited cell-virus membrane fusion. The mechanism of the anti-influenza virus activity of RIE was therefore correlated to the interaction between MRPs and phospholipid bilayers, an integral component of the plasma membrane.
30

Parallel Sorting on the Heterogeneous AMD Fusion Accelerated Processing Unit

Delorme, Michael Christopher 18 March 2013 (has links)
We explore efficient parallel radix sort for the AMD Fusion Accelerated Processing Unit (APU). Two challenges arise: efficiently partitioning data between the CPU and GPU and the allocation of data in memory regions. Our coarse-grained implementation utilizes both the GPU and CPU by sharing data at the begining and end of the sort. Our fine-grained implementation utilizes the APU’s integrated memory system to share data throughout the sort. Both these implementations outperform the current state of the art GPU radix sort from NVIDIA. We therefore demonstrate that the CPU can be efficiently used to speed up radix sort on the APU. Our fine-grained implementation slightly outperforms our coarse-grained implementation. This demonstrates the benefit of the APU’s integrated architecture. This performance benefit is hindered by limitations in the APU’s architecture and programming model. We believe that the performance benefits will increase once these limitations are addressed in future generations of the APU.

Page generated in 0.0479 seconds