• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of rainfall on the determination of tree age and establishment patterns of acacia tortilis in the Limpopo Province, South Africa

Mokoka, Malesela Vincent January 2016 (has links)
Thesis (MSc. Agriculture (Pasture Science)) -- University of Limpopo, 2016. / The relationships between tree age, growth rings, and stem circumference correlated with establishment patterns may be a valuable instrument to reveal the functioning of woody species in the Savanna Biome. A study on tree age and establishment patterns of Acacia tortilis in the semi-arid regions of the Limpopo Province was conducted to aid an understanding of the causes of encroachment in savanna vegetation. This study aimed to determine the periodicity of growth ring formation at two study areas, correlate the number of growth rings with different tree characteristics and document tree population establishment patterns of Acacia tortilis, using stem circumferences. This was done in order to predict long-term bush encroachment using the interaction between rainfall and soil on the age, growth and establishment patterns of Acacia tortilis. Data was collected at three sites representing two study areas, two sites at the University of Limpopo’s Syferkuil Agricultural Experimental Farm and one site at the Sondela Nature Reserve in the Limpopo Province. The study incorporated two different soil forms and two rainfall regimes. Trees were divided into five height classes; namely, <0.5 m, >0.5 – 1.5 m, >1.5 – 2.0 m, >2.0 – 3.0 m and >3m. Fifty trees (ten in each class) were felled at each site, and the following recordings were made: tree height, stem circumference and crown diameter. Furthermore, each felled stump was taken to the laboratory and examined for growth rings. The results indicated that growth pattern of Acacia tortilis stems were more influenced by soil form than the amount of rainfall. Tree height was not significantly affected by soil form. However, rainfall proved to have a significant effect on the final height of the plant. Both rainfall and soil form did not have a substantial effect on the number of growth rings. Crown diameter was affected by soil form but rainfall did not prove to have the same effect. Correlations between growth rings and stem circumferences, tree height and crown diameter, proved to have significant relationships. However, the relationship between stem circumference and the number of growth rings was the most significant. iv A prediction model was created using the relationship between stem size and growth rings. Using this model tree age can be determined in a non-destructive manner. However, the absence of a correlation between rainfall and establishment strongly suggests that rainfall cannot be used, on its own, to determine the establishment sequence and the pattern of bush encroachment. The study suggests that natural developments responsible for establishment patterns and population dynamics of woody species are complex, and their effects are visible after an extensive period. Therefore, to understand these influential processes comprehensively, several seasons of observations and monitoring would be recommended. Future research on this particular topic should include more than one encroaching species, because this will provide a broader perspective on the encroachment patterns of bush communities. However, the focus should be on studying the influence of growth limiting factors such as soil and climatic impacts, as well as area-specific environmental factors on the growth of encroaching species, such as Acacia tortilis. Key words: Bush encroachment, dendrochronology, growth rings, tree age, savanna, stem circumference Note: The candidate and the supervisors are aware of the fact that the Acacia genus has been revised. However, in this dissertation, the genus and species Acacia tortilis is still used. Relevant changes will be used in future publications. / University of Limpopo’s Department of Agriculture and National Research Foundation
2

Assessment of soil erosion hazard around the abandoned mine in formerly Mutale Municipality, Limpopo Province, South Africa

Bvindi, Abidence 18 May 2019 (has links)
MENVSC (Geography) / Department of Geography and Geo-Information Sciences / Environmental degradation is a quite familiar factor of the mining industry that has been associated with South African mining industry from the beginning. The decommissioning of abandoned mines before the environment legislation, The National Environmental Management Act 107 of 1998 and the Minerals and Petroleum Resources Development Act 23 of 2002, was introduced is of great concern as the abandonment of mines without appropriate remediation and pollution monitoring was the result. Soil erosion has been recognised as an environmental hazard that emanates from abandoned mines. This study seeks to assess the soil erosion hazard around Nyala abandoned mine. The modified method of Soil Loss Estimation Model for Southern Africa (SLEMSA), for assessing soil erosion hazard, was used to estimate the spatial variation of erosion to achieve the goal of the study. Parameters that were considered for the model include relief (Slope steepness, S & slope length, L), soil erodibility (Fb), vegetation cover (C) and rainfall erosivity (E). Soil samples were collected from the field and; sieve and hydrometer analysis was conducted to determine the erodibility factor value of the study area. The model was run in a GIS environment (ArcGIS) and the parameters were multiplied to generate a soil erosion hazard map for the abandoned Nyala mine area. Results from the study indicated that 74.3 % of the watershed experiences low to moderate erosion hazard, with an estimated annual soil loss of 2.76 tons/ha/yr. The low rates of soil erosion in most parts of the watershed are associated with the low topographic ratio and low rainfall erosivity. The research demonstrated that the modified SLEMSA model used within GIS is a very useful tool as it enhances the capacity to assess and model the spatial variation of soil erosion hazard in a timeously and affordable manner. / NRF
3

Estimation of Groundwater Recharge Response from Rainfall Events in a Semi-Arid Fractured Aquifer: Case Study of Quaternary Catchment A91H, Limpopo Province, South Africa

Nemaxwi, Phathutshedzo 05 1900 (has links)
MESHWR / See the attached abstract below
4

Influence of climate change on flood and drought cycles and implications on rainy season characteristics in Luvuvhu River Catchment

Dagada, K. 18 September 2017 (has links)
MESHWR / Department of Hydrology and Water Resources / This study dealt with the influence of climate variability on flood and drought cycles and implications on rainy season characteristics in Luvuvhu River Catchment (LRC) in Limpopo of South Africa. Extreme weather events resulting in hazards such as floods and droughts are becoming more frequent due to climate change. Extreme events affect rainy season characteristics and hence have an influence on water availability and agricultural production. Annual temperature was obtained from Water Research Commission for stations 0723485W, 0766628W and 0766898W from 1950-2013 were used to show/or confirm if there is climate variability in LRC. Daily rainfall data was obtained from SAWS for stations 0766596 9, 0766563 1, 0723485 6 and 0766715 5 were used to detect climate variability and determine the onset, duration and cessation of the rainy season. Streamflow data obtained from the Department of Water and Sanitation for stations A9H004, A9H012, and A9H001 for at least a period of 30 years for each station were used for climate variability detection and determination of flood and drought cycles. Influence of climate variability on floods and droughts and rainy season characteristic were determined in the area of study. Trends were evaluated for temperature, rainfall and streamflow data in the area of study using Mann Kendall (MK) and linear regression (LR) methods. MK and LR detected positive trends for temperature (maximum and minimum) and streamflow stations. MK and LR results of rainfall stations showed increasing trends for stations 0766596 9, and 0766563 1 whereas stations 0723485 6 and 0766715 5 showed decreasing trends. Standardized precipitation index (SPI) was used to determine floods and droughts cycles. SPI results have been classified either as moderately, severely and extremely dry or, moderately, very and extremely wet. This SPI analysis provides more details of dominance of distinctive dry or wet conditions for a rainy season at a particular station. Mean onset of rainfall varied from day 255 to 297, with 0766715 5 showing the earliest onset compared to the rest of the stations. Cessation of rainfall for most of the hydrological years was higher than the mean days of 88, 83 and 86 days in 0766596 9, 0766563 1 and 0723485 6 stations. Mean duration of rainfall varied from 102 to 128, with station 0766715 5 showing shortest duration of rainfall. The results of the study showed that the mean onset, duration and cessation were comparable for all stations except 0766715 5 which had lower values. The study also found that climate variability greatly affects onset, duration and cessation of rainfall during dry years. This led to late onset, early cessation and relatively short duration of the rainfall season. Communities within the catchment must be educated to practice activities such as conservation of indigenous plants, reduce carbon dioxide emissions.
5

Long term seasonal and annual changes in rainfall duration and magnitude in Luvuvhu River Catchment, South Africa

Mashinye, Mosedi Deseree 18 May 2018 (has links)
MESHWR / Department of Hydrology and Water Resources / This study was aimed at investigating the long term seasonal and annual changes in rainfall duration and magnitude at Luvuvhu River Catchment (LRC). Rainfall in this catchment is highly variable and is characterised of extreme events which shift runoff process, affect the timing and magnitude of floods and drought, and alter groundwater recharge. This study was motivated by the year to year changes of rainfall which have some effects on the availability of water resources. Computed long term total seasonal, annual rainfall and total number of seasonal rainy days were used to identify trends for the period of 51 years (1965- 2015), using Mann Kendal (MK), linear regression (LR) and quantile regression methods. The MK, LR and quantile regression methods have indicated dominance of decreasing trends of the annual, seasonal rainfall and duration of seasonal rainfall although they were not statistically significant. However, statistical significant decreasing trends in duration of seasonal rainfall were identified by MK and LR at Matiwa, Palmaryville, Levubu, and Entabeni Bos stations only. Quantile regression identified the statistically significant decreasing trends on 0.2, 0.5 and 0.7 quantiles only in the Palmaryville, Levubu and Entabeni Bos, respectively. Stations with non-statistically significant decreasing trends of annual and seasonal rainfall had magnitude of change ranging from 0.12 to 12.31 and 0.54 to 6.72 mm, respectively. Stations with non-statistically increasing trends of annual and seasonal rainfall magnitude had positive magnitude of change ranging from 1.51 to 6.78 and 2.05 to 6.51 mm, respectively. The Study recommended further studies using other approaches to determine the duration of rainfall to improve, update and compare the results obtained in the current study. Continuous monitoring and installation of rain gauges are recommended on the lower reaches of the catchment for the findings to be of complete picture for the whole catchment and to also minimize the rainfall gaps in the stations. Water resources should be used in a sustainable way to avoid water crisis risk in the next generations. / NRF

Page generated in 0.0725 seconds