• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2208
  • 363
  • 282
  • 176
  • 98
  • 72
  • 38
  • 36
  • 34
  • 25
  • 24
  • 21
  • 21
  • 20
  • 20
  • Tagged with
  • 4031
  • 532
  • 474
  • 469
  • 429
  • 426
  • 418
  • 407
  • 384
  • 366
  • 338
  • 315
  • 288
  • 284
  • 279
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Inference in ERGMs and Ising Models.

Xu, Yuanzhe January 2023 (has links)
Discrete exponential families have drawn a lot of attention in probability, statistics, and machine learning, both classically and in the recent literature. This thesis studies in depth two discrete exponential families of concrete interest, (i) Exponential Random Graph Models (ERGMs) and (ii) Ising Models. In the ERGM setting, this thesis consider a “degree corrected” version of standard ERGMs, and in the Ising model setting, this thesis focus on Ising models on dense regular graphs, both from the point of view of statistical inference. The first part of the thesis studies the problem of testing for sparse signals present on the vertices of ERGMs. It proposes computably efficient tests for a wide class of ERGMs. Focusing on the two star ERGM, it shows that the tests studied are “asymptotically efficient” in all parameter regimes except one, which is referred to as “critical point”. In the critical regime, it is shown that improved detection is possible. This shows that compared to the standard belief, in this setting dependence is actually beneficial to the inference problem. The main proof idea for analyzing the two star ERGM is a correlations estimate between degrees under local alternatives, which is possibly of independent interest. In the second part of the thesis, we derive the limit of experiments for a class of one parameter Ising models on dense regular graphs. In particular, we show that the limiting experiment is Gaussian in the “low temperature” regime, non Gaussian in the “critical” regime, and an infinite collection of Gaussians in the “high temperature” regime. We also derive the limiting distributions of commonlt studied estimators, and study limiting power for tests of hypothesis against contiguous alternatives (whose scaling changes across the regimes). To the best of our knowledge, this is the first attempt at establishing the classical limits of experiments for Ising models (and more generally, Markov random fields).
412

Stochastic Geometry and Mosaic Models with Applications

Nilsson, Albert January 2023 (has links)
In this thesis, we consider stationary random mosaics with a focus on the Poisson-Voronoi mosaic and the Poisson-Delaunay mosaic. We consider properties of stationary random mosaics in R2, such as mean value results of the typical cell. Further, we simulate various mean value results of the typical cell, a random neighbor of the typical cell, and the zero cell for the Poisson-Voronoi mosaic in R2. Some theory of point processes is introduced that is needed for random mosaics, including Palm theory, marked point processes, and the Pois point process. Finally, we consider an incremental flip-based algorithm for generating the Voronoi mosaic.
413

Probability of Solvability of Random Systems of 2-Linear Equations over <i>GF</i>(2)

Yeum, Ji-A January 2008 (has links)
No description available.
414

Random indexing with Pattern Grammar : Multi-context vector space model that uses linguistics patterns / Random indexing med hjälp av mallgramatik : Multikontextinbäddning av ord som använder lingvistiska mönster

Klåvus, Carl Henrik January 2024 (has links)
This thesis presents an algorithm incorporating pattern grammar with random indexing to solve three English synonym benchmarks. A pattern grammar model and a baseline random indexing implementation benchmarked the solution. The results show an significant improvement on the synonym benchmark compared to a baseline random indexing implementation. Most language models today focus on vector space models where the linguistic origins of the information are lost. Even though these algorithms produce good results, it is hard to know where the model learned something. With the help of patterns, we can learn more about how these models work. / Den här uppsatsen presenterar en algoritm som använder sig av mallgrammatik tillsammans med random indexing för att lösa tre synonymtest för engelska. En mallgrammatiksmodell och en referensimplementation av random indexing utvärderades. Resultaten visade en tydlig förbättring på de olika testerna jämfört med referensimplementationen. De flesta språkmodeller idag fokuserar på vektorrepresentationer av språk där det lingvistiska ursprunget hos språket försvinner. Dessa modeller är mycket framgångsrika, men det är svårt att säga något om vad och hur en modell kommit fram till en slutsats. Med hjälp av språkmönster baserade på mallgrammatik kan vi lära oss mer om hur dessa modeller fungerar.
415

A portable C random number generator

Crunk, Anthony Wayne 15 November 2013 (has links)
Proliferation of computers with varying word sizes has led to increases in software use where random number generation is required. Several techniques have been developed. Criteria of randomness, portability, period, reproducibility, variety, speed, and storage are used to evaluate developed generation methods. The Tausworthe method is the only method to meet the portability requirement, and is chosen to be implemented. A C language implementation is proposed as a possible implementation and test results are presented to confirm the acceptability of the proposed code. / Master of Science
416

Computational Methods for Random Differential Equations: Theory and Applications

Navarro Quiles, Ana 01 March 2018 (has links)
Desde las contribuciones de Isaac Newton, Gottfried Wilhelm Leibniz, Jacob y Johann Bernoulli en el siglo XVII hasta ahora, las ecuaciones en diferencias y las diferenciales han demostrado su capacidad para modelar satisfactoriamente problemas complejos de gran interés en Ingeniería, Física, Epidemiología, etc. Pero, desde un punto de vista práctico, los parámetros o inputs (condiciones iniciales/frontera, término fuente y/o coeficientes), que aparecen en dichos problemas, son fijados a partir de ciertos datos, los cuales pueden contener un error de medida. Además, pueden existir factores externos que afecten al sistema objeto de estudio, de modo que su complejidad haga que no se conozcan de forma cierta los parámetros de la ecuación que modeliza el problema. Todo ello justifica considerar los parámetros de la ecuación en diferencias o de la ecuación diferencial como variables aleatorias o procesos estocásticos, y no como constantes o funciones deterministas, respectivamente. Bajo esta consideración aparecen las ecuaciones en diferencias y las ecuaciones diferenciales aleatorias. Esta tesis hace un recorrido resolviendo, desde un punto de vista probabilístico, distintos tipos de ecuaciones en diferencias y diferenciales aleatorias, aplicando fundamentalmente el método de Transformación de Variables Aleatorias. Esta técnica es una herramienta útil para la obtención de la función de densidad de probabilidad de un vector aleatorio, que es una transformación de otro vector aleatorio cuya función de densidad de probabilidad es conocida. En definitiva, el objetivo de este trabajo es el cálculo de la primera función de densidad de probabilidad del proceso estocástico solución en diversos problemas basados en ecuaciones en diferencias y diferenciales aleatorias. El interés por determinar la primera función de densidad de probabilidad se justifica porque dicha función determinista caracteriza la información probabilística unidimensional, como media, varianza, asimetría, curtosis, etc., de la solución de la ecuación en diferencias o diferencial correspondiente. También permite determinar la probabilidad de que acontezca un determinado suceso de interés que involucre a la solución. Además, en algunos casos, el estudio teórico realizado se completa mostrando su aplicación a problemas de modelización con datos reales, donde se aborda el problema de la estimación de distribuciones estadísticas paramétricas de los inputs en el contexto de las ecuaciones en diferencias y diferenciales aleatorias. / Ever since the early contributions by Isaac Newton, Gottfried Wilhelm Leibniz, Jacob and Johann Bernoulli in the XVII century until now, difference and differential equations have uninterruptedly demonstrated their capability to model successfully interesting complex problems in Engineering, Physics, Chemistry, Epidemiology, Economics, etc. But, from a practical standpoint, the application of difference or differential equations requires setting their inputs (coefficients, source term, initial and boundary conditions) using sampled data, thus containing uncertainty stemming from measurement errors. In addition, there are some random external factors which can affect to the system under study. Then, it is more advisable to consider input data as random variables or stochastic processes rather than deterministic constants or functions, respectively. Under this consideration random difference and differential equations appear. This thesis makes a trail by solving, from a probabilistic point of view, different types of random difference and differential equations, applying fundamentally the Random Variable Transformation method. This technique is an useful tool to obtain the probability density function of a random vector that results from mapping another random vector whose probability density function is known. Definitely, the goal of this dissertation is the computation of the first probability density function of the solution stochastic process in different problems, which are based on random difference or differential equations. The interest in determining the first probability density function is justified because this deterministic function characterizes the one-dimensional probabilistic information, as mean, variance, asymmetry, kurtosis, etc. of corresponding solution of a random difference or differential equation. It also allows to determine the probability of a certain event of interest that involves the solution. In addition, in some cases, the theoretical study carried out is completed, showing its application to modelling problems with real data, where the problem of parametric statistics distribution estimation is addressed in the context of random difference and differential equations. / Des de les contribucions de Isaac Newton, Gottfried Wilhelm Leibniz, Jacob i Johann Bernoulli al segle XVII fins a l'actualitat, les equacions en diferències i les diferencials han demostrat la seua capacitat per a modelar satisfactòriament problemes complexos de gran interés en Enginyeria, Física, Epidemiologia, etc. Però, des d'un punt de vista pràctic, els paràmetres o inputs (condicions inicials/frontera, terme font i/o coeficients), que apareixen en aquests problemes, són fixats a partir de certes dades, les quals poden contenir errors de mesura. A més, poden existir factors externs que afecten el sistema objecte d'estudi, de manera que, la seua complexitat faça que no es conega de forma certa els inputs de l'equació que modelitza el problema. Tot aço justifica la necessitat de considerar els paràmetres de l'equació en diferències o de la equació diferencial com a variables aleatòries o processos estocàstics, i no com constants o funcions deterministes. Sota aquesta consideració apareixen les equacions en diferències i les equacions diferencials aleatòries. Aquesta tesi fa un recorregut resolent, des d'un punt de vista probabilístic, diferents tipus d'equacions en diferències i diferencials aleatòries, aplicant fonamentalment el mètode de Transformació de Variables Aleatòries. Aquesta tècnica és una eina útil per a l'obtenció de la funció de densitat de probabilitat d'un vector aleatori, que és una transformació d'un altre vector aleatori i la funció de densitat de probabilitat és del qual és coneguda. En definitiva, l'objectiu d'aquesta tesi és el càlcul de la primera funció de densitat de probabilitat del procés estocàstic solució en diversos problemes basats en equacions en diferències i diferencials. L'interés per determinar la primera funció de densitat es justifica perquè aquesta funció determinista caracteritza la informació probabilística unidimensional, com la mitjana, variància, asimetria, curtosis, etc., de la solució de l'equació en diferències o l'equació diferencial aleatòria corresponent. També permet determinar la probabilitat que esdevinga un determinat succés d'interés que involucre la solució. A més, en alguns casos, l'estudi teòric realitzat es completa mostrant la seua aplicació a problemes de modelització amb dades reals, on s'aborda el problema de l'estimació de distribucions estadístiques paramètriques dels inputs en el context de les equacions en diferències i diferencials aleatòries. / Navarro Quiles, A. (2018). Computational Methods for Random Differential Equations: Theory and Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/98703
417

Passeio aleatório unidimensional com ramificação em um meio aleatório K-periódico / One-dimensional random walk with branching in a random k-periodic enviroment.

Rocha, Josué Macario de Figueirêdo 25 October 2001 (has links)
Neste trabalho estudamos um passeio aleatório, unidimensional com ramificação em Z+ em um meio aleatório não identicamente distribuído. Definimos recorrência e transiência para este processo e apresentamos um critério de classificação. / We study a \"supercritical\" branching random walk on Z+ in a one-dimensional non i.i.d. random environment, which considers both the branching mechanism and the step transition. Criteria of (strong) recurrence and transience are presented for this model.
418

Passeio aleatório unidimensional com ramificação em um meio aleatório K-periódico / One-dimensional random walk with branching in a random k-periodic enviroment.

Josué Macario de Figueirêdo Rocha 25 October 2001 (has links)
Neste trabalho estudamos um passeio aleatório, unidimensional com ramificação em Z+ em um meio aleatório não identicamente distribuído. Definimos recorrência e transiência para este processo e apresentamos um critério de classificação. / We study a \"supercritical\" branching random walk on Z+ in a one-dimensional non i.i.d. random environment, which considers both the branching mechanism and the step transition. Criteria of (strong) recurrence and transience are presented for this model.
419

Performance of Imputation Algorithms on Artificially Produced Missing at Random Data

Oketch, Tobias O 01 May 2017 (has links)
Missing data is one of the challenges we are facing today in modeling valid statistical models. It reduces the representativeness of the data samples. Hence, population estimates, and model parameters estimated from such data are likely to be biased. However, the missing data problem is an area under study, and alternative better statistical procedures have been presented to mitigate its shortcomings. In this paper, we review causes of missing data, and various methods of handling missing data. Our main focus is evaluating various multiple imputation (MI) methods from the multiple imputation of chained equation (MICE) package in the statistical software R. We assess how these MI methods perform with different percentages of missing data. A multiple regression model was fit on the imputed data sets and the complete data set. Statistical comparisons of the regression coefficients are made between the models using the imputed data and the complete data.
420

Graphical representations of Ising and Potts models : Stochastic geometry of the quantum Ising model and the space-time Potts model

Björnberg, Jakob Erik January 2009 (has links)
HTML clipboard Statistical physics seeks to explain macroscopic properties of matter in terms of microscopic interactions. Of particular interest is the phenomenon of phase transition: the sudden changes in macroscopic properties as external conditions are varied. Two models in particular are of great interest to mathematicians, namely the Ising model of a magnet and the percolation model of a porous solid. These models in turn are part of the unifying framework of the random-cluster representation, a model for random graphs which was first studied by Fortuin and Kasteleyn in the 1970’s. The random-cluster representation has proved extremely useful in proving important facts about the Ising model and similar models. In this work we study the corresponding graphical framework for two related models. The first model is the transverse field quantum Ising model, an extension of the original Ising model which was introduced by Lieb, Schultz and Mattis in the 1960’s. The second model is the space–time percolation process, which is closely related to the contact model for the spread of disease. In Chapter 2 we define the appropriate space–time random-cluster model and explore a range of useful probabilistic techniques for studying it. The space– time Potts model emerges as a natural generalization of the quantum Ising model. The basic properties of the phase transitions in these models are treated in this chapter, such as the fact that there is at most one unbounded fk-cluster, and the resulting lower bound on the critical value in <img src="http://upload.wikimedia.org/math/a/b/8/ab820da891078a8245d7f4f3252aee4f.png" />. In Chapter 3 we develop an alternative graphical representation of the quantum Ising model, called the random-parity representation. This representation is based on the random-current representation of the classical Ising model, and allows us to study in much greater detail the phase transition and critical behaviour. A major aim of this chapter is to prove sharpness of the phase transition in the quantum Ising model—a central issue in the theory— and to establish bounds on some critical exponents. We address these issues by using the random-parity representation to establish certain differential inequalities, integration of which gives the results. In Chapter 4 we explore some consequences and possible extensions of the results established in Chapters 2 and 3. For example, we determine the critical point for the quantum Ising model in <img src="http://upload.wikimedia.org/math/a/b/8/ab820da891078a8245d7f4f3252aee4f.png" /> and in ‘star-like’ geometries. / HTML clipboard Statistisk fysik syftar till att förklara ett materials makroskopiska egenskaper i termer av dess mikroskopiska struktur. En särskilt intressant egenskap är är fenomenet fasövergång, det vill säga en plötslig förändring i de makroskopiska egenskaperna när externa förutsättningar varieras. Två modeller är särskilt intressanta för en matematiker, nämligen Ising-modellen av en magnet och perkolationsmodellen av ett poröst material. Dessa två modeller sammanförs av den så-kallade fk-modellen, en slumpgrafsmodell som först studerades av Fortuin och Kasteleyn på 1970-talet. fk-modellen har sedermera visat sig vara extremt användbar för att bevisa viktiga resultat om Ising-modellen och liknande modeller. I den här avhandlingen studeras den motsvarande grafiska strukturen hos två näraliggande modeller. Den första av dessa är den kvantteoretiska Isingmodellen med transverst fält, vilken är en utveckling av den klassiska Isingmodellen och först studerades av Lieb, Schultz och Mattis på 1960-talet. Den andra modellen är rumtid-perkolation, som är nära besläktad med kontaktmodellen av infektionsspridning. I Kapitel 2 definieras rumtid-fk-modellen, och flera probabilistiska verktyg utforskas för att studera dess grundläggande egenskaper. Vi möter rumtid-Potts-modellen, som uppenbarar sig som en naturlig generalisering av den kvantteoretiska Ising-modellen. De viktigaste egenskaperna hos fasövergången i dessa modeller behandlas i detta kapitel, exempelvis det faktum att det i fk-modellen finns högst en obegränsad komponent, samt den undre gräns för det kritiska värdet som detta innebär. I Kapitel 3 utvecklas en alternativ grafisk framställning av den kvantteoretiska Ising-modellen, den så-kallade slumpparitetsframställningen. Denna är baserad på slumpflödesframställningen av den klassiska Ising-modellen, och är ett verktyg som låter oss studera fasövergången och gränsbeteendet mycket närmare. Huvudsyftet med detta kapitel är att bevisa att fasövergången är skarp—en central egenskap—samt att fastslå olikheter för vissa kritiska exponenter. Metoden består i att använda slumpparitetsframställningen för att härleda vissa differentialolikheter, vilka sedan kan integreras för att lägga fast att gränsen är skarp. I Kapitel 4 utforskas några konsekvenser, samt möjliga vidareutvecklingar, av resultaten i de tidigare kapitlen. Exempelvis bestäms det kritiska värdet hos den kvantteoretiska Ising-modellen på <img src="http://upload.wikimedia.org/math/a/b/8/ab820da891078a8245d7f4f3252aee4f.png" /> , samt i ‘stjärnliknankde’ geometrier. / QC 20100705

Page generated in 0.1193 seconds