Spelling suggestions: "subject:"random matrices."" "subject:"fandom matrices.""
71 |
Matrices aléatoires et leurs applications à la physique statistique et quantique / Random matrices and applications to statistical physics and quantum physicsNadal, Céline 21 June 2011 (has links)
Cette thèse est consacrée à l'étude des matrices aléatoires et à quelques unes de leurs applications en physique, en particulier en physique statistique et en physique quantique.C'est un travail essentiellement analytique complété par quelques simulations numériques Monte Carlo. Dans un premier temps j'introduis la théorie des matrices aléatoires de façon assez générale : je définis les principaux ensembles de matrices aléatoires (en particulier gaussiens) et décris leurs propriétés fondamentales (distribution des valeurs propres, densité, etc). Dans un second temps je m'intéresse à des systèmes physiques d'interfaces à l'équilibre qui peuvent être modélisés par des marcheurs ``vicieux'', c'est-à-dire des marcheurs aléatoires conditionnés à ne pas se croiser. On peut montrer que la distribution des positions des marcheurs à un temps donné est exactement celle des valeurs propres d'une matrice aléatoire. J'étudie ensuite un problème physique qui relève d'un domaine très différent, celui de l'information quantique, mais qui est également étroitement relié aux matrices aléatoires: celui de l'intrication pour des états aléatoires dans un système quantique bipartite (fait de deux sous-parties) de grande taille. Enfin je m'intéresse à certaines propriétés des matrices aléatoires comme la distribution du nombre de valeurs propres positives ou encore la distribution de la valeur propre maximale (loi de Tracy-Widom près de la moyenne et grandes déviations loin de la moyenne). / This thesis presents a study of random matrices and some applications in physics, in particular in statistical physics and quantum physics. This work is mostly analytic, but I also performed some Monte Carlo numerical simulations. First I introduce random matrix theory: I define the main random matrix ensembles (in particular Gaussian ensembles) and describe their fundamental properties (distribution of the eigenvalues, density...). Then I study a physical system of interfaces at equilibrium that can be modeled by ``vicious walkers'', ie random walkers that can not meet each other.One can show that the distribution of the positions of the walkers at a given time is the same as the distribution of the eigenvalues of a random matrix. I also consider a problem coming from a very different field, the field of quantum information theory, but that is also closely related to random matrices: the distribution of entanglement for random states in a large bipartite quatum system (made of two parts). Finally I study some properties of random matrices such as the distribution of the number of positive eigenvalues or the one of the maximal eigenvalue (Tracy-Widom and large deviations).
|
72 |
Zufallsmatrixtheorie für die Lindblad-MastergleichungLange, Stefan 31 January 2020 (has links)
Wir wenden die Zufallsmatrixtheorie auf den Lindblad-Superoperator L, d.h. den linearen Superoperator der Lindblad-Gleichung an und untersuchen die Verteilung und die Korrelationen der Eigenwerte von L zur Charakterisierung der Dynamik komplexer offener Quantensysteme. Zufallsmatrixensembles für L werden über Ensembles hermitescher und positiver Matrizen definiert, die alle freien Koeffizienten der Lindblad-Gleichung enthalten. Wir bestimmen Mittelwert und Breiten der Verteilung der von Null verschiedenen Eigenwerte von L in der komplexen Ebene und zeigen, wie diese Verteilung von den Verteilungen und Korrelationen der Eigenwerte der Koeffizientenmatrizen abhängt. In vielerlei Hinsicht ähneln die Ensembles für L dem Ginibreschen orthogonalen Ensemble. Beispielsweise finden wir das gleiche Abstoßungsverhalten zwischen benachbarten Eigenwerten. Alle Ergebnisse werden mit denen einer früheren Zufallsmatrixanalyse von Ratengleichungen verglichen. / Random matrix theory is applied to the Lindblad superoperator L, i.e., the linear superoperator of the Lindblad equation. We study the distribution and correlations of eigenvalues of L to characterize the dynamics of complex open quantum systems. Random matrix ensembles for L are given in terms of ensembles of hermitian and positive matrices, which contain all free coefficients of the Lindblad equation. We determine mean and widths of the distribution of the nonzero eigenvalues of L in the complex plane and show how this distribution depends on the distributions and correlations of eigenvalues of the matrices of coefficients. In many respects the ensembles for L resemble the Ginibre orthogonal ensemble. For instance, we find the same repulsion characteristics for neighboring eigenvalues. All results are compared to an earlier work on random matrix theory for rate equations.
|
73 |
On Truncations of Haar Distributed Random MatricesStewart, Kathryn Lockwood 23 May 2019 (has links)
No description available.
|
74 |
[en] NON-ASYMPTOTIC RANDOM MATRIX THEORY AND THE SMALL BALL METHOD / [pt] TEORIA NÃO ASSINTÓTICA DE MATRIZES ALEATÓRIAS E O MÉTODO DA BOLA PEQUENAPEDRO ABDALLA TEIXEIRA 08 June 2020 (has links)
[pt] Motivado por problemas no campo da recuperação de sinais por programação convexa, o objetivo deste trabalho é fornecer uma análise precisa do método das bola pequena e suas conexões com a teoria não assintótica das matrizes aleatórias. Em particular, o estudo dos valores singulares cônicos de matrizes aleatórias desempenhará um papel fundamental na análise de tais problemas. / [en] Motivated by problems in the field of signal recovery by convex programming, the aim of this work is to provide a careful analysis of the celebrated small ball method and its connections with the non-asymptotic theory of random matrices. In particular, the study of the conic singular values of random matrices will play a key role to analyze such problems.
|
75 |
Distribuição de autovalores de matrizes aleatórias. / Eigenvalues distribution of random matrices.Silva, Roberto da 18 May 2000 (has links)
Em uma detalhada revisão nós obtemos a lei do semi-círculo para a densidade de estados no ensemble gaussiano de Wigner. Também falamos sobre a analogia eletrostática de Dyson, enxergando os autovalores como cargas que se repelem no círculo unitário, mostrando que nesse caso a densidade de estados é uniforme. Em um contexto mais geral nós obtemos a lei do semicírculo, provando o teorema de Glivenko-Cantelli para variáveis fortemente correlacionadas usando um método combinatorial de contagem de trajetos, o que nos dá subsídios para falar em estabilidade da lei do semi-círculo. Também, nesta dissertação nós estudamos as funções de correlação nos ensembles gaussiano e circular, mostrando que sob um adequado reescalamento elas são idênticas. Outros ensembles nesta dissertação foram investigados usando o Método de Gram para o caso em que os autovalores são limitados em um intervalo. Computamos a densidade de estados para cada um desses ensembles. Mais precisamente no ensemble de Chebychev, os resultados foram obtidos analiticamente e nesse ensemble além da densidade de estados, também traçamos grá
cos da função de correlação truncada. / In a detailed review we obtain a semi-circle law for the density of states in theWigners Gaussian Ensemble. Also we talk about Dysons Analogy, seeing the eigenvalues like charges that repulse themselves in the unitary circle, showing that this case the density of states is uniform. In a more general context we obtain the semi-circle law, proving the Glivenko-Cantelli Theorem to strongly correlated variables, using a combinatorial method of Paths' Counting. Thus we are showing the stability of the semi-circle Law. Also, in this dissertation we study the correlation functions in the Gaussian and Circular ensembles showing that using the Gram's Method in the case that eigenvalues are limited in a interval. In these ensembles we computed the density of states. More precisely, in a Chebychev ensemble the results were obtained analytically. In this ensemble, we also obtain graphics of the truncated correlation function.
|
76 |
Moments method for random matrices with applications to wireless communication. / La méthode des moments pour les matrices aléatoires avec application à la communication sans filMasucci, Antonia Maria 29 November 2011 (has links)
Dans cette thèse, on étudie l'application de la méthode des moments pour les télécommunications. On analyse cette méthode et on montre son importance pour l'étude des matrices aléatoires. On utilise le cadre de probabilités libres pour analyser cette méthode. La notion de produit de convolution/déconvolution libre peut être utilisée pour prédire le spectre asymptotique de matrices aléatoires qui sont asymptotiquement libres. On montre que la méthode de moments est un outil puissant même pour calculer les moments/moments asymptotiques de matrices qui n'ont pas la propriété de liberté asymptotique. En particulier, on considère des matrices aléatoires gaussiennes de taille finie et des matrices de Vandermonde al ?eatoires. On développe en série entiére la distribution des valeurs propres de differents modèles, par exemple les distributions de Wishart non-centrale et aussi les distributions de Wishart avec des entrées corrélées de moyenne nulle. Le cadre d'inference pour les matrices des dimensions finies est suffisamment souple pour permettre des combinaisons de matrices aléatoires. Les résultats que nous présentons sont implémentés en code Matlab en générant des sous-ensembles, des permutations et des relations d'équivalence. On applique ce cadre à l'étude des réseaux cognitifs et des réseaux à forte mobilité. On analyse les moments de matrices de Vandermonde aléatoires avec des entrées sur le cercle unitaire. On utilise ces moments et les détecteurs à expansion polynomiale pour décrire des détecteurs à faible complexité du signal transmis par des utilisateurs mobiles à une station de base (ou avec deux stations de base) représentée par des réseaux linéaires uniformes. / In this thesis, we focus on the analysis of the moments method, showing its importance in the application of random matrices to wireless communication. This study is conducted in the free probability framework. The concept of free convolution/deconvolution can be used to predict the spectrum of sums or products of random matrices which are asymptotically free. In this framework, we show that the moments method is very appealing and powerful in order to derive the moments/asymptotic moments for cases when the property of asymptotic freeness does not hold. In particular, we focus on Gaussian random matrices with finite dimensions and structured matrices as Vandermonde matrices. We derive the explicit series expansion of the eigenvalue distribution of various models, as noncentral Wishart distributions, as well as correlated zero mean Wishart distributions. We describe an inference framework so flexible that it is possible to apply it for repeated combinations of random ma- trices. The results that we present are implemented generating subsets, permutations, and equivalence relations. We developped a Matlab routine code in order to perform convolution or deconvolution numerically in terms of a set of input moments. We apply this inference framework to the study of cognitive networks, as well as to the study of wireless networks with high mobility. We analyze the asymptotic moments of random Vandermonde matrices with entries on the unit circle. We use them and polynomial expansion detectors in order to design a low complexity linear MMSE decoder to recover the signal transmitted by mobile users to a base station or two base stations, represented by uniform linear arrays.
|
77 |
Distribuição de autovalores de matrizes aleatórias. / Eigenvalues distribution of random matrices.Roberto da Silva 18 May 2000 (has links)
Em uma detalhada revisão nós obtemos a lei do semi-círculo para a densidade de estados no ensemble gaussiano de Wigner. Também falamos sobre a analogia eletrostática de Dyson, enxergando os autovalores como cargas que se repelem no círculo unitário, mostrando que nesse caso a densidade de estados é uniforme. Em um contexto mais geral nós obtemos a lei do semicírculo, provando o teorema de Glivenko-Cantelli para variáveis fortemente correlacionadas usando um método combinatorial de contagem de trajetos, o que nos dá subsídios para falar em estabilidade da lei do semi-círculo. Também, nesta dissertação nós estudamos as funções de correlação nos ensembles gaussiano e circular, mostrando que sob um adequado reescalamento elas são idênticas. Outros ensembles nesta dissertação foram investigados usando o Método de Gram para o caso em que os autovalores são limitados em um intervalo. Computamos a densidade de estados para cada um desses ensembles. Mais precisamente no ensemble de Chebychev, os resultados foram obtidos analiticamente e nesse ensemble além da densidade de estados, também traçamos grá
cos da função de correlação truncada. / In a detailed review we obtain a semi-circle law for the density of states in theWigners Gaussian Ensemble. Also we talk about Dysons Analogy, seeing the eigenvalues like charges that repulse themselves in the unitary circle, showing that this case the density of states is uniform. In a more general context we obtain the semi-circle law, proving the Glivenko-Cantelli Theorem to strongly correlated variables, using a combinatorial method of Paths' Counting. Thus we are showing the stability of the semi-circle Law. Also, in this dissertation we study the correlation functions in the Gaussian and Circular ensembles showing that using the Gram's Method in the case that eigenvalues are limited in a interval. In these ensembles we computed the density of states. More precisely, in a Chebychev ensemble the results were obtained analytically. In this ensemble, we also obtain graphics of the truncated correlation function.
|
78 |
Le théorème central limite pour la marche linéaire sur le tore et le théorème de renouvellement dans Rd / The central limit theorem for the linear random walk on the torus and the renewal theorem in RdBoyer, Jean-Baptiste 28 June 2016 (has links)
La première partie de cette thèse porte sur l’étude de la marche aléatoire sur le tore Td := Rd/Zd définie par une mesure de probabilité SLd(Z). Pour étudier le Théorème Central Limite et la loi du logarithme itéré, nous appliquons la méthode de Gordin qui consiste à se ramener à des martingales. Pour cela, nous utilisons un résultat de Bourgain, Furmann, Lindenstrauss et Mozes nous permettant de résoudre l’équation de Poisson pour des points ayant de bonnes propriétés diophantiennes. Dans la deuxième partie, nous étudions la marche sur Rd\{0} définie par l’action de SLd(R) et nous montrons un résultat de vitesse de convergence dans le théorème de renouvellement de Guivarc’h et Le Page. / The first part of this thesis deals with the random walk on the torus Td := Rd/Zd defined by a robability measure on SLd(Z). To study the Central Limit Theorem and the Law of the Iterated Logarithm, we apply Gordin’s method. To do so, we use a result proved by Bourgain, Furmann, Lindenstrauss and Mozes to solve Poisson’s equation at point’s having good diophantine properties.In the second part, we study the walk on Rd \ {0} defined by the action of SLd(R) and we prove a result about the rate of convergence in Guivarc’h and Le Page’s renewal theorem.
|
79 |
Analyse mathématique de divers systèmes de particules en milieu désordonné / Mathematical study of some systems of particles in a disordered mediumDucatez, Raphaël 18 September 2018 (has links)
Cette thèse est consacrée à l’étude mathématique de divers systèmes de particules classiques et quantiques, en milieu désordonné. Elle comprend quatre travaux publiés ou soumis. Dans le premier nous fournissons une nouvelle formule permettant de prouver la localisation d’Anderson en une dimension d’espace et de caractériser la décroissance des fonctions propres à l’infini. Le second contient l’une des premières preuves de la localisation pour une infinité de particules en intéraction, dans l’approximation d’Hartree-Fock. Le troisième est dédié au modèle d’Anderson soumis à une perturbation périodique en temps. Sous certaines conditions sur la fréquence d’oscillation nous prouvons l’absence de diffusion. Dans le dernier travail nous montrons la décroissancedes corrélations pour le modèle du Jellium en une dimension dans un fond inhomogène, en utilisant la distance de Hilbert sur les cônes et le théorème de Birkhoff-Hopf. / This thesis is devoted to the mathematical study of some systems of classical and quantum particles, in a disordered medium. It comprises four published or submitted works. In the first one we provide a new formula allowing to prove Anderson localisation in one space dimension and to characterise the decay at infinity of the eigenfunctions. The second contains one of the first proofs of localisation for infinitely many particles in interaction, in the Hartree-Fock approximation. The third work is dedicated to the Anderson model in a time-periodic perturbation. Under certain conditions on the oscillation frequency we prove the absence of diffusion. In the last work we show the decay of correlations for the one-dimensional Jellium model in an inhomogeneous background, using the Hilbert distance on cones and the Birkhoff-Hopf theorem
|
80 |
Asymptotics of the Fredholm determinant corresponding to the first bulk critical universality class in random matrix modelsBothner, Thomas Joachim 06 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / We study the one-parameter family of determinants $det(I-\gamma K_{PII}),\gamma\in\mathbb{R}$ of an integrable Fredholm operator $K_{PII}$ acting on the interval $(-s,s)$ whose kernel is constructed out of the $\Psi$-function associated with the Hastings-McLeod solution of the second Painlev\'e equation. In case $\gamma=1$, this Fredholm determinant describes the critical behavior of the eigenvalue gap probabilities of a random Hermitian matrix chosen from the Unitary Ensemble in the bulk double scaling limit near a quadratic zero of the limiting mean eigenvalue density. Using the Riemann-Hilbert method, we evaluate the large $s$-asymptotics of $\det(I-\gamma K_)$ for all values of the real parameter $\gamma$.
|
Page generated in 0.0517 seconds