Spelling suggestions: "subject:"fandom metric"" "subject:"handom metric""
1 |
Maximal edge-traversal time in First Passage Percolation / ファーストパッセージパーコレーションの最大辺移動時間Nakajima, Shuta 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21543号 / 理博第4450号 / 新制||理||1639(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 福島 竜輝, 教授 熊谷 隆, 教授 牧野 和久 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
2 |
Limite d'échelle de cartes aléatoires en genre quelconque / Scaling Limit of Arbitrary Genus Random MapsBettinelli, Jérémie 26 October 2011 (has links)
Au cours de ce travail, nous nous intéressons aux limites d'échelle de deux classes de cartes. Dans un premier temps, nous regardons les quadrangulations biparties de genre strictement positif g fixé et, dans un second temps, les quadrangulations planaires à bord dont la longueur du bord est de l'ordre de la racine carrée du nombre de faces. Nous voyons ces objets comme des espaces métriques, en munissant leurs ensembles de sommets de la distance de graphe, convenablement renormalisée. Nous montrons qu'une carte prise uniformément parmi les cartes ayant n faces dans l'une de ces deux classes tend en loi, au moins à extraction près, vers un espace métrique limite aléatoire lorsque n tend vers l'infini. Cette convergence s'entend au sens de la topologie de Gromov--Hausdorff. On dispose de plus des informations suivantes sur l'espace limite que l'on obtient. Dans le premier cas, c'est presque sûrement un espace de dimension de Hausdorff 4 homéomorphe à la surface de genre g. Dans le second cas, c'est presque sûrement un espace de dimension 4 avec une frontière de dimension 2, homéomorphe au disque unité de R^2. Nous montrons en outre que, dans le second cas, si la longueur du bord est un petit~o de la racine carrée du nombre de faces, on obtient la même limite que pour les quadrangulations sans bord, c'est-à-dire la carte brownienne, et l'extraction n'est plus requise. / In this work, we discuss the scaling limits of two particular classes of maps. In a first time, we address bipartite quadrangulations of fixed positive genus g and, in a second time, planar quadrangulations with a boundary whose length is of order the square root of the number of faces. We view these objects as metric spaces by endowing their sets of vertices with the graph metric, suitably rescaled.We show that a map uniformly chosen among the maps having n faces in one of these two classes converges in distribution, at least along some subsequence, toward a limiting random metric space as n tends to infinity. This convergence holds in the sense of the Gromov--Hausdorff topology on compact metric spaces. We moreover have the following information on the limiting space. In the first case, it is almost surely a space of Hausdorff dimension 4 that is homeomorphic to the genus g surface. In the second case, it is almost surely a space of Hausdorff dimension 4 with a boundary of Hausdorff dimension 2 that is homeomorphic to the unit disc of R^2. We also show that in the second case, if the length of the boundary is little-o of the square root of the number of faces, the same convergence holds without extraction and the limit is the same as for quadrangulations without boundary, that is the Brownian map.
|
3 |
La dynamique des difféomorphismes du cercle selon le point de vue de la mesure / The dynamics of the generic circle diffeomorphism (with respect to the measure)Triestino, Michele 21 May 2014 (has links)
Les travaux de ma thèse s'articulent en trois parties distinctes.Dans la première partie j'étudie les mesures de Malliavin-Shavguldize sur les difféomorphismes du cercle et de l'intervalle. Il s'agit de mesures de type « Haar » pour ces groupes de dimension infinie : elles furent introduites il a une vingtaine d'années pour permettre une étude de leur théorie des représentations. Un premier chapitre est dédié à recueillir les résultats présents dans la littérature et et les représenter dans une forme plus étendue, avec un regard particulier sur les propriétés de quasi-invariance de ces mesures. Ensuite j'étudie de problèmes de nature plus dynamique : quelle est la dynamique qu'on doit s'attendre d'un difféomorphisme choisi uniformément par rapport à une mesure de Malliavin-Shavguldize ? Je démontre en particulier qu'il y a une forte présence des difféomorphismes de type Morse-Smale.La partie suivante vient de mon premier travail publié, obtenu en collaboration avec Andrés Navas. Inspirés d'un théorème récent de Avila et Kocsard sur l'unicité des distributions invariantes par un difféomorphisme lisse minimal du cercle, nous analysons le même problème en régularité faible, avec des argument plus géométriques.La dernière partie est constituée des résultats récemment obtenus avec Mikhail Khristoforov et Victor Kleptsyn. Nous abordons les problèmes reliés à la gravité quantique de Liouville en étudiant des espaces auto-similaires qui sont la limite de graphes finis. Nous démontrons qu'il est possible de trouver des distances aléatoires non-triviales sur ces espaces qui sont compatibles avec la structure auto-similaire. / This thesis is divided into three different parts.In the first part, we study the Malliavin-Shavgulidze measure on circle and interval diffeomorphisms. They are Haar-like measures for these infinite-dimensional groups: they were introduced about twenty years ago to help to study their represantation theory. The first chapter collects the results that were obtained in the past years and in some cases we present them under a renewed point of view, with particular attention on quasi-invariance properties for this measures. Then we study some questions of dynamical nature: which is the typical dynamics that we must expect described by a diffeomorphism chosen randomly according to some Malliavin-Shavguldize measure? In particular, we prove that there is a strong presence of Morse-Smale diffeomorphisms.The third chapter comes from the published joint work with Andrés Navas. Inspired by a recent theorem by Avila and Kocsard about the uniqueness of the invariant distribution for a minimal smooth circle diffeomorphism, we analyse the same problem in low regularity, with more geometric arguments.The last part corresponds to the recent results obtained with Mikhail Khristoforov and Victor Kleptsyn. We consider problems in relation with Liouville quantum gravity, by studying self-similar metric spaces which are the limit of finite graphs. We prove that it is possible to find nontrivial random distances on these spaces which are compatible with the self-similar structure.
|
Page generated in 0.072 seconds