• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 68
  • 13
  • 11
  • 11
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • Tagged with
  • 248
  • 248
  • 66
  • 64
  • 61
  • 52
  • 44
  • 39
  • 36
  • 30
  • 29
  • 25
  • 24
  • 22
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Utilization of auditory cues to enhance therapy for children with cerebral palsy

Nixon, Mason Earl 10 April 2013 (has links)
The objective of the research is to examine the impact of auditory stimulus on improving reaching performance in children with cerebral palsy. A form of auditory stimulus, called rhythmic auditory stimulation (RAS), is well-established in neurological fields as well as in music-based rehabilitation and therapy. RAS is a method in which the rhythm functions as a sensory cue to induce temporal stability and enhancement of movement patterns by what is believed to be a temporal constraint of the patient’s internal optimized path of motion. In current neurological studies, it is suggested that activity in the premotor cortex may represent the integration of auditory information with temporally organized motor action during rhythmic cuing. Based on this theory, researchers have shown that rhythmic auditory stimulation can produce significant improvement in mean gait velocity, cadence, and stride length in patients with Parkinson’s disease. Evidence validating this observation was also seen in a study on hemiparetic stroke wherein patients displayed improvements in spatio-temporal arm control, reduction in variability of timing and reaching trajectories, and kinematic smoothing of the wrist joint during rhythmic entrainment. Lastly, studies have suggested an accompaniment of sound feedback in addition to visual feedback can result in a positive influence and higher confidence in patients who have had a stroke or spinal cord injury. Although an effect of rhythmic cuing on upper extremity therapy has been explored in areas where brain injury has occurred (such as patients who have incurred stroke, spinal injury, traumatic brain injury, etc.), what has not been explored is the effect of rhythmic cuing on upper extremity therapy for individuals with neurological movement disorders, such as cerebral palsy. Thus, in this research, we set out to explore the effect of RAS in therapeutic interventions for children with cerebral palsy. Through this investigation, we examine its effect on reaching performance as measured through range of motion, peak angular velocity, movement time, path length, spatio-temporal variability, and movement units. For this assessment, we created a virtual system to test the aforementioned principles. We established clinically based angular measurements that include elbow flexion, shoulder flexion, and shoulder abduction using a 3D depth sensor to evaluate relevant metrics in upper extremity rehabilitation. We validated the output of our measurements through a comparison with a Vicon Motion Capture System. We then confirmed the trends of the metrics between groups of adults, children, and children with cerebral palsy. Through testing our system with adults, children, and children with cerebral palsy, we believe we have constructed a system that may induce engagement, which is critical to physical therapy, and may also have a positive impact on the metrics. Although we see trends indicative of an effect through use of the system on children with cerebral palsy, we believe further testing is needed in order to establish or refute the effect and also to definitively establish or refute the effect of rhythmic auditory stimulation. The system, the angular measurements, and the metrics we employ could provide an excellent foundation for future research in this space.
82

A comparison of the protective characteristics of selected ankle braces

Comer, Shawn January 1992 (has links)
The purpose of this study was to compare the protective characteristics of four different ankle braces and one form of ankle taping. An inversion and plantar flexion platform was used to induce ankle movements. The subjects used in this study consisted of 10 volunteer male students. The subjects had no sprains five months prior to testing. All subjects were tested in the same size 10 shoes, high tops and low tops. A Certified Athletic Trainer applied all ankle braces and ankle tapings. A closed basketweave with heel locks, adherent spray, and pre-wrap was used for all taping conditions.After the application of the ankle braces or taping, each subject performed two tests on the inversion and plantar flexion platform. A random order was used among the subjects. An ankle inversion platform was modified to induce 30 degrees of inversion and 35 degrees of plantar flexion simultaneously. The subjects will be filmed using a Locam 16mm at 200 frame/second. All subjects were filmed from the posterior plane with markings on the posterior aspect of the lower leg to help analyze the movement at the subtalar joint. A Calcomp 9100 series digitizer that was interfaced with a VAX computer was used to analyze the data and calculate the amount of angular displacement at the subtalar joint. An ANOVA with repeated measures was used to determine significant differences between support techniques. University procedures for the protection of human subjects was followed. ANOVA procedures indicated no significant difference in angular displacement between braces. A statistical analysis indicated that low top shoes provided significantly more support than high top shoes in braced ankles. / School of Physical Education
83

An Analysis of Infant Bouncing at Different Spring Frequencies

Habib Perez, Olinda D 19 April 2011 (has links)
Infants explore environments through repetitive movements which are constrained or facilitated by the environmental context. The current studies analyzed how typically developing infants bounced in four environments that differed by system natural frequency. Four pre-walking infants (age 9.7 months ±1.8) were placed in four spring conditions with natural spring frequencies of 0.9, 1.15, 1.27 and 1.56 Hz. All infants bounced above the natural spring frequency in all conditions suggesting that they do not solely behave like a mass-spring system. Two patterns of bouncing adaptations were identified. Three infants regulated bounce frequency, while one infant regulated the percentage of time on the ground. When infants matched their bounce frequency to the natural frequency, trunk vertical displacement and joint ranges of motion decreased across conditions and demonstrated a shift from non-spring like to circular spring-like phase planes. Moderate to high correlations were found for inter- and intra-limb coordination. Conversely, when an infant regulated time on the ground, trunk vertical displacement and joint ranges of motion remained the same across conditions and inter- and intra-limb correlations were low to moderate. Phase planes remained circular spring-like for this infant. Asymmetrical loading patterns and decreasing vertical ground reaction forces were found in all infants suggesting that a timing component is always regulated. The difference in bouncing pattern may be indicative of different bouncing skill level.
84

The strength of the evidence for splinting and serial casting as treatment for elbow contractures: an integrative Critical Literature Review

Whitford, Jacki 06 1900 (has links)
Elbow contractures in burn survivors lead to difficulties in their ability to perform meaningful occupations. Interventions focus on improving movement at the elbow while considering social and psychological factors in the individual's environmental context. The purpose of the review was to determine the methodological quality of research evaluating splinting and serial casting to improve elbow contractures and resulting functional limitations. A comprehensive search strategy uncovered 10 research studies. Standardized critical appraisal tools and protocols were used to analyze the research. Although some methodological issues were identified, the findings were positive. Strengths and weaknesses of the research were delineated to support and guide the use of serial casting and splinting. A body of research was found to warrant consideration of social and psychological factors. Conclusion. There is preliminary quality of evidence to support the use of splinting and serial casting and important considerations for future research. / Rehabilitation Science - Occupational Therapy
85

Biomechanics of Dysfunction and Injury Management for the Cervical Spine

Sim, Darryl Frederick January 2004 (has links)
The research described in this thesis focuses on the biomechanics of cervical spine injury diagnosis and rehabilitation management. This research is particularly relevant to the diagnosis of minor neck injuries that typically arise from motor vehicle accidents and are classified as "whiplash injuries". The diagnosis and treatment of these chronic neck problems has been particularly difficult and frustrating and these difficulties prompted calls for the objective evaluation of the techniques and procedures used in the measurement and assessment of neck dysfunction. The biomechanical aspects of the clinical diagnosis of minor cervical spine injuries were investigated in this work by reconfiguring an existing detailed biomechanical model of the human neck to simulate injuries to particular structures, and to model abnormal muscle activation. The investigation focused on the range of motion assessment and the methods of testing and rehabilitating the function of the deep neck muscles because the model could be applied to provide further insight into these facets of neck injury diagnosis and management. The de Jager detailed head-neck model, available as a research tool from TNO (The Netherlands), was chosen for this study because it incorporated sufficient anatomical detail, but the model required adaptation because it had been developed for impact and crash test dummy simulations. This adaptation significantly broadened the model's field of application to encompass the clinical domain. The facets of the clinical diagnosis of neck dysfunction investigated in this research were range of motion and deep muscle control testing. Range of motion testing was simulated by applying a force to the head to generate the primary motions of flexion/extension, lateral flexion and axial twisting and parametric changes were made to particular structures to determine the effect on the head-neck movement. The main finding from this study of cervical range of motion testing was that while motion can be accurately measured in three dimensions, consideration of the three dimensional nature of the motion can add little to the clinical diagnosis of neck dysfunctions. Given the non-discriminatory nature of range of motion testing, the scientific collection and interpretation of the three dimensional motion patterns cannot be justified clinically. The de Jager head-neck model was then further adapted to model the cranio-cervical flexion test, which is used clinically to test the function of the deep muscle groups of the neck. This simulation provided confirmation of the efficacy of using a pressure bio-feedback unit to provide visual indication of the activation of the deep flexor muscles in the neck. However, investigation of the properties of the pressure bio-feedback unit identified significant differences in the stiffness of the bag for the different levels of inflation that must be accounted for if comparisons are to be made between subjects. Following the identification of the calibration anomalies associated with the pressure bio-feedback unit, the motion of the point of pressure of the head on the headrest and the force at this point of contact during the activation of the deep flexor muscle group were investigated as an alternative source of feedback. This output, however, was found to be subject specific, depending on the posterior shape of the skull that determined the point of contact during the head rolling action. Clinically, an important outcome of the alternative feedback assessment was that the prescribed action to target the deep flexor muscle group will feel different for each individual, ranging from a slide to a roll of the head on the headrest, and this must be accounted for when explaining the action and during rehabilitation management.
86

Reliability and clinical utility of the hand and wrist strength gauge

Broniecki, Monica January 2003 (has links)
TThis thesis looks at the development of a Hand and Wrist Strength Gauge. The gauge was developed by the author at the Flinders Medical Centre Occupational Therapy Department in 1997. / thesis (MApSc(OccupationalTherapy))--University of South Australia, 2003.
87

An investigation into the effect of stretching frequency on range of motion at the ankle joint

Trent, Vanessa Unknown Date (has links)
Stretching is a widely prescribed technique that has been demonstrated to increase range of motion. Consequently it may enhance performance and aid in the prevention and treatment of injury. Few studies have investigated the frequency of stretching on a daily basis. The purpose of this study was to investigate the effect of stretching frequency on range of motion at the ankle joint. The detraining effect was also investigated after a period without stretching. Thirty-one female subjects participated in this study. They were randomly assigned to a control group who did not stretch a group who stretched two times per week (Stretch-2) or a group who stretched four times per week (Stretch-4). The stretching intervention was undertaken over four weeks and targeted the gastrocnemius and soleus muscles. Each stretch was held for duration of 30 seconds and repeated five times. Prior to the intervention (PRE), dorsiflexion was measured using a weights and pulley system that passively moved the ankle joint from a neutral position into dorsiflexion. After the four week stretching period (POST), dorsiflexion was measured once again to determine the change following the stretching programme. Following a further four week period where no stretching took place (FINAL), dorsiflexion was measured to determine the detraining effect. Electromyography was used to monitor the activity of the plantarflexors and dorsiflexors during the measuring procedure. The results of the study showed a significant increase in ankle joint range of motion for the Stretch-4 group (p<0.05) when comparing PRE and POST measurements. The Stretch-2 and control groups did not show significant differences (p>0.05) between PRE and POST measurements. When comparing the PRE and FINAL measurements of the Stretch-4 group, no significant differences were recorded (p>0.05). The POST and FINAL measurements were significantly different (p<0.05). After the detraining period the Stretch-4 group lost 99.8% of their range of motion gains. The present data provide some evidence that the viscoelastic properties of the muscle stretched were unchanged by the four week static stretching programme. The mechanism involved in the observed increase in range of motion for the Stretch-4 group is possibly that of enhanced stretch tolerance of the subject. Further research is required to support this conjecture.
88

The effects of sagittal plane postures on trunk rotation range of motion

Montgomery, Trevor January 2008 (has links)
Axial rotation is regarded as an essential movement of the trunk that allows many individuals to participate in vocations, sports and activities of daily living. Unfortunately when the destabilising nature of rotation is combined with that of spinal flexion, the risk of injuring the spine can increase significantly. Few studies have investigated the potential benefits that maximizing trunk rotation has in certain vocation and sport-related arenas and none have looked at whether adopting certain spinal postures in the sagittal plane can maximise trunk rotation more than others. The aim of the study was to determine the effects of alterations of trunk inclination, spinal posture, pelvic fixation and turning direction on the active range of motion (ROM) of trunk rotation. Twenty healthy individuals participated in the main study. Retro-reflective markers were placed on key anatomical locations and used to track the movement of the thorax and pelvis during a series of repeated maximal trunk rotations in ten different spinal positions within the sagittal plane. Trunk kinematics and kinetics were recorded simultaneously using an optoelectronic motion analysis and force platform measuring system. A repeated-measures multiple analysis of variance (MANOVA) was used to test for the main effects of trunk inclination, spinal posture, fixation of pelvis and direction of turn on maximum active ROM of trunk rotation, maximum pelvic rotation and the anterior-posterior and lateral displacement of the centre of pressure (COP). To investigate test-retest reliability, ten participants were tested on two separate days. Repeatability for each outcome measure was investigated using interclass correlation coefficients (ICC) and Bland Altman graphs. The majority of subjects showed reasonable test-retest reliability for trunk rotation measures in each of the test positions, with ICC’s ranging between 0.562 – 0.731. Overall, trunk inclination (0°, 22.5°, 45°) forward in the sagittal plane had a significant effect on trunk and pelvic rotation (p<0.001) and lateral displacement of the COP (p<0.005) during trunk rotation. As trunk inclination increased from 0° to 45° there was an average increase in trunk rotation ROM of approximately 10 % (approximately 3.4°). Furthermore, increasing trunk inclination led to an increase in lateral displacement of the COP and a decrease in pelvic rotation. Spinal posture (neutral, flexed, extended) at a forward inclination of 45° had a significant effect on trunk rotation (p<0.01) and pelvic rotation (p<0.05), with a neutral spine averaging approximately 3 % (approximately 1.1°) more trunk rotation than a flexed or extended posture. The position and posture of the spine in the sagittal plane appears to have a significant influence on ranges of trunk rotation. The study suggests that rotating the trunk when adopting a neutral spine inclined to 45° will maximise range of trunk rotation and encourage a natural stabilisation of the lower body. This posture meets the unique set of biomechanical requirements for the sport of golf and may help to reduce the risk of injury in manual material handling tasks. Conversely, rotating the trunk whilst the thoracolumbar spine is flexed leads to a reduction in trunk rotation ROM, encourages greater pelvic and lower body rotation, reduces torque production of the trunk and may increase the risk of lower back injury. These findings have important implications in relation to the teaching of spinal position during vocations, sports and activities of daily living that seek to maximise trunk rotation.
89

Stabilisation of the human ankle joint in varying degrees of freedom : investigation of neuromuscular mechanisms

Skoss, Ann Rachel Locke January 2002 (has links)
Previous research investigating the stability of the ankle joint complex may be categorised into two methodological groups, employing either an actuator to perturb the limb, or a form of standing balance disturbance such as a tilting platform, both of which test the joint in single degree of freedom (DOF). The aim of this thesis was to investigate how we control foot position and stabilise the joint when there is potential for movement in three DOF. A secondary aim of the thesis was to model the intrinsic mechanical properties of the ankle joint complex in three dimensions when coupled movement of the tibio-talar and talo-calcaneal joints are possible. This thesis details (i) the development of a perturbation rig that allows foot movement in single- or three-DOF with associated real-time visual target-matching software, and (ii) the use of the rig to investigate the stabilisation of the ankle joint complex in single- and three-DOF. The experimental procedure used a common task performed in three experimental conditions. Subjects were required to maintain a neutral foot position while developing varying levels of plantar-flexion torque. A perturbation was applied to the foot if subjects were within specified tolerance for both foot position and torque, represented by the visual display. Performance of the task in the first condition required the subject to only match torque as the foot position was fixed, with the perturbation being applied in dorsi-flexion (ie, single-DOF). The second experimental condition allowed the foot to move in the sagittal plane, hence subjects were required to control both torque and foot position in single-DOF, with perturbation applied in dorsi-flexion. The third condition enabled movement in dorsi/plantar-flexion, inversion/eversion and adduction/abduction (three-DOF) in both task and perturbation. Subjects were required to maintain the neutral foot position and the necessary torque level. There were three areas of interest common to each experimental protocol. The muscle strategy used to complete the task was investigated using a combination of surface and fine-wire electromyography on lower leg and thigh muscles. The 500ms period prior to perturbation was investigated to determine if synergies were evident between muscles such as medial and lateral gastrocnemius, soleus and peroneus longus. Two classes of activation strategies for the three-DOF condition emerged from the subject population: differential activation of the triceps surae group, and co-contraction. The former strategy may take advantage of the distinct morphology of the lateral gastrocnemius and peroneus longus muscles to best perform the position-matching component of the 3D task. The results suggest that the ankle joint is mostly stabilised in 3D by the intrinsic mechanical actions of the muscles producing plantar flexion moments. The muscles stabilised the foot in inversion, but not in eversion where there was very little motion. However, the different activation strategies employed may have varied efficacy in contributing to joint stability. This form of active stabilisation means that the previous literature focus on reflexes to stabilise the joint may need to be reassessed. Likewise, it may be appropriate to use the perturbation rig to quantify active ankle joint stability in order to assess the probability of ankle injury, rather than the current clinical measures employed. The reflexive response due to the perturbation was examined in the 200ms following perturbation. Variation in the modulation of monosynaptic reflexes was observed between subjects in various muscles in the higher DOF tasks. This is likely due to the differing activation strategies used to perform the task, and the variability in the kinematic response to perturbation. An attempt was made to calculate the intrinsic mechanical properties of the joint in 3-D using the kinematic and kinetic data during the first 15 ms period of perturbation. The system was modelled as a spring-damper using a constrained non-linear least squares, with stiffness and viscous terms for each axis, and inertial tensor elements as variables in the routine. The effect of increased muscle activation on the displacement of the foot about each of the anatomical axes was to significantly lower the movement of the sub-talar joint.
90

The normal and ACL deficient knee : an in-vivo three dimensional kinematic and electromyographic analysis /

Ramsey, Dan K., January 1900 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2003. / Härtill 5 uppsatser. - På omsl. felaktigt: Karolinska University Press.

Page generated in 0.2286 seconds