• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 243
  • 117
  • 73
  • 56
  • 27
  • 17
  • 13
  • 11
  • 10
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 668
  • 112
  • 99
  • 97
  • 79
  • 71
  • 62
  • 62
  • 61
  • 53
  • 52
  • 51
  • 50
  • 50
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

Écoulements microfluidiques pilotés sans contact par une onde laser

Robert De Saint Vincent, Matthieu 08 October 2010 (has links) (PDF)
L'effet thermocapillaire (ou Marangoni) est la résultante mécanique d'un gradient de tension interfaciale induit par la présence d'un gradient de température sur une interface fluide. Il se manifeste par (i) la migration d'un objet fini (goutte, bulle) immergé, et (ii) une déflexion de l'interface. Sa nature interfaciale le rend particulièrement pertinent à petite échelle, notamment en microfluidique diphasique. Ce travail de thèse montre comment un effet thermocapillaire induit localement par chauffage laser peut être utilisé pour produire des composants optofluidiques élémentaires (vanne, aiguillage, échantillonneur), et en présente une étude quantitative. La déstabilisation d'un jet microfluidique forcée par laser, conduisant à sa rupture, est également présentée et caractérisée. Cette « boîte à outils » optique fournit ainsi une approche sans contact, pour produire et manipuler des gouttes en microfluidique digitale sans nécessité d'une microfabrication dédiée. Par ailleurs, afin de caractériser sur des temps longs les gouttes produites, et ainsi considérer des populations statistiquement significatives, un dispositif optoélectronique simple pour mesurer les gouttes et leur vitesse en temps réel a également été développé.
532

Conception de cavités radiatives chauffées par plasmas de striction magnétique en régime 100ns

Hamann, Franck 16 December 2003 (has links) (PDF)
Ce travail estime le potentiel des plasmas de striction magnétique (Z-pinches) pour le chauffage de cavités radiatives à haute température (>200eV). Des modèles simples sont fournis pour calculer les performances atteignables avec des courants de 5 à 100 MA en 100 ns. La physique monodimensionnelle à l'échelle de l'épaisseur du plasma et les instabilités hydrodynamiques sont étudiées. Puis l'amélioration des performances des cavités avec une double coquille ou l'installation d'un champ magnétique axial est analysée. L'attaque directe par un Z-pinch d'une cible de fusion par confinement inertiel est enfin considérée. Tous les résultats présentés reposent sur une approche théorique et numérique (bidimensionnelle) et sur l'exploitation de résultats expérimentaux obtenus sur le générateur américain "Z". Les annexes rappellent les équations de la MHD radiative et vérifient leur validité pour les plasmas de striction magnétique.
533

De la modélisation et des instabilités des films liquides tombants

Ruyer-Quil, Christian 26 October 2012 (has links) (PDF)
Ce mémoire présente une synthèse de travaux de recherche portant sur l'étude et la modélisation d'instabilités de grandes longueurs d'ondes en général et de films liquides tombants en particulier. Les différentes méthodes sont discutées au chapitre~1 et appliquées aux écoulements inertiels en cellule de Hele-Shaw. L'instabilité Kapitza d'un film tombant est étudiée au chapitre~2. Les couplages de l'instabilité Kapitza avec les instabilités Marangoni (films chauffés) et Rayleigh-Plateau (films sur fibres) font l'objet des chapitres~3 et 4. Le chapitre~5 présente mes derniers travaux sur les films non-Newtoniens, en présence d'une paroi poreuse ou encore cisaillés par un écoulement gazeux.
534

Characterization of damage due to stress corrosion cracking in carbon steel using nonlinear surface acoustic waves

Zeitvogel, Daniel Tobias 27 August 2012 (has links)
Cold rolled carbon steel 1018C is widely used in pressurized fuel pipelines. For those structures, stress corrosion cracking (SCC) can pose a significant problem because cracks initiate late in the lifetime and often unexpectedly, but grow fast once they get started. To ensure a safe operation, it is crucial that any damage can be detected before the structural stability is reduced by large cracks. In the early stages of SCC, microstructural changes occur which increase the acoustic nonlinearity of the material. Therefore, an initially monochromatic Rayleigh wave is distorted and measurable higher harmonics are generated. Different levels of stress corrosion cracking is induced in five specimens. For each specimen, nonlinear ultrasonic measurements are performed before and after inducing the damage. For the measurements, oil coupled wedge transducers are used to generate and detect tone burst Rayleigh wave signals. The amplitudes of the received fundamental and second harmonic waves are measured at varying propagation distances to obtain a measure for the acoustic nonlinearity of the material. The results show a damage-dependent increase in nonlinearity for early stages of damage, indicating the suitability for this nonlinear ultrasonic method to detect stress corrosion cracking before structural failure.
535

The Influence of Sulfide Stress Conditions on the 34S-isotope Enrichment in Sulfate During Dissimilatory Sulfate Reduction

Eckert, Thomas 17 January 2012 (has links)
The purpose of this thesis was to experimentally investigate the influence of increasing sulfide concentrations on the 34S isotope enrichment in sulfate during dissimilatory sulfate reduction (DSR). Two independent batch culture experiments with different maximum sulfide concentrations of up to 20 mM in the first and up to 40 mM in the second experiment were conducted using the marine sulfate reducer Desulfobacter latus. A comparison of the results from both experiments revealed a distinct offset towards more positive δ34S(SO42-) values in the 'high-sulfide' experiment, compared to the 'low-sulfide' experiment. While a Rayleigh type fractionation model was able to match the slopes - i.e., enrichment factors - of both experiments, it failed to reproduce the proper y-axis intercept in the 'high-sulfide' experiment. I therefore propose a new fractionation model that allows for a backward flow of ambient H2S into the bacterial cell and a subsequent enzymatically mediated oxidation of H2S to sulfate. The new backward flow increases with elevated H2S concentrations and is described as a first order rate constant. Unlike a Rayleigh type fractionation model, my model explains the slope and y-intercept of both experiments with a single parameter set. The new model with H2S-reflux further suggests that it can be used to determine growth kinetic parameters like the half-saturation constant through δ34S measurements. These findings support the hypothesis of microbially mediated, bi-directional S-fluxes between oxidized and reduced sulfur species. Because the S-transport during DSR appears to be bi-directional, great care must be taken when evaluating culture experiments with a Rayleigh type fractionation model, owing to the fact that an evident S-backward flow violates the prerequisites for applying the Rayleigh model. A variable S-backward flow results in variable enrichment factors which increased from -11 (no H2S) to ≈-17 ‰ (40 mM of H2S) in my experiments. I show for the first time the significance of a bi-directional H2S transport across the cell membrane during DSR and its consequences for the 34S-isotope fractionation in sulfate.
536

The Influence of Sulfide Stress Conditions on the 34S-isotope Enrichment in Sulfate During Dissimilatory Sulfate Reduction

Eckert, Thomas 17 January 2012 (has links)
The purpose of this thesis was to experimentally investigate the influence of increasing sulfide concentrations on the 34S isotope enrichment in sulfate during dissimilatory sulfate reduction (DSR). Two independent batch culture experiments with different maximum sulfide concentrations of up to 20 mM in the first and up to 40 mM in the second experiment were conducted using the marine sulfate reducer Desulfobacter latus. A comparison of the results from both experiments revealed a distinct offset towards more positive δ34S(SO42-) values in the 'high-sulfide' experiment, compared to the 'low-sulfide' experiment. While a Rayleigh type fractionation model was able to match the slopes - i.e., enrichment factors - of both experiments, it failed to reproduce the proper y-axis intercept in the 'high-sulfide' experiment. I therefore propose a new fractionation model that allows for a backward flow of ambient H2S into the bacterial cell and a subsequent enzymatically mediated oxidation of H2S to sulfate. The new backward flow increases with elevated H2S concentrations and is described as a first order rate constant. Unlike a Rayleigh type fractionation model, my model explains the slope and y-intercept of both experiments with a single parameter set. The new model with H2S-reflux further suggests that it can be used to determine growth kinetic parameters like the half-saturation constant through δ34S measurements. These findings support the hypothesis of microbially mediated, bi-directional S-fluxes between oxidized and reduced sulfur species. Because the S-transport during DSR appears to be bi-directional, great care must be taken when evaluating culture experiments with a Rayleigh type fractionation model, owing to the fact that an evident S-backward flow violates the prerequisites for applying the Rayleigh model. A variable S-backward flow results in variable enrichment factors which increased from -11 (no H2S) to ≈-17 ‰ (40 mM of H2S) in my experiments. I show for the first time the significance of a bi-directional H2S transport across the cell membrane during DSR and its consequences for the 34S-isotope fractionation in sulfate.
537

Experimental and numerical studies of the Rayleigh-Taylor instability for bounded liquid films with injection through the boundary

Abdelall, Fahd Fathi 07 April 2004 (has links)
One of the most demanding engineering issues in Inertial Fusion Energy (IFE) reactors is the design of a reaction chamber that can withstand the intense photons, neutrons and charged particles due to the fusion event. Rapid pulsed deposition of energy within thin surface layers of the fusion reactor components such as the first wall may cause severe surface erosion due to ablation. One particularly innovative concept for the protection of IFE reactor cavity first walls from the direct energy deposition associated with soft X-rays and target debris is the thin liquid film protection scheme. In this concept, a thin film of molten liquid lead is fed through a silicon carbide first wall to protect it from the incident irradiations. Numerous studies have been reported in the literature on the thermal response of the liquid film to the intermittent photon and ion irradiations, as well as on the fluid dynamics and stability of liquid films on vertical and upward-facing inclined surfaces. However, no investigation has heretofore been reported on the stability of thin liquid films on downward-facing solid surfaces with liquid injection through (i.e. normal to the surface of) the bounding wall. This flow models the injection of molten liquid lead over the upper end cap of the reactor chamber. The hydrodynamics of this flow can be interpreted as a variation of the Rayleigh-Taylor instability due to the effect of the bounding wall which is continuously fed with the heavier fluid. In order to gain additional insight into the thin liquid film protection scheme, experiments have been conducted to investigate the critical issues associated with this concept. To this end, an experimental test facility has been designed and constructed to simulate the hydrodynamics of thin liquid films injected normal to the surface of and through downward-facing flat walls. In this doctoral thesis, the effect of different design parameters (film thickness, liquid injection velocity, liquid properties and inclination angle) on liquid film stability has been examined. The results address the morphology of the film free surface, the frequency of droplet formation and detachment, the size and penetration depth of the detached droplets, and the interface wave number. These experimental data have been used to validate a novel mechanistic numerical code based on a level contour reconstruction front tracking method over a wide range of parameters. The results of this investigation will allow designers of IFE power plants to identify appropriate windows for successful operation of the thin liquid film protection concept for different coolants.
538

Simulation of elastic waves propagation and reduced vibration by trench considered soil liquefaction mechanic

Sun, Hong-hwa 09 February 2004 (has links)
This thesis analyses the governing equation of elastic wave propagation by the finite difference method , and considered absorbing boundary condition and the material damping to simulate behavior of wave propagation. Otherwise, we combined with the mechanics of the soil pore water pressure raised by shear stress effected repeatedly and the soil property is changed by water pressure effected to simulate physical phenomenon in half-space, and probe into the soil liquefaction process during different force types. Using the developed numerical wave propagation model probe into reducing vibration by dug trench and filler trench, and analyzed data by 1/3 octave band method. This thesis discuss with reducing vibration effect by different trench disposed¡Bdifferent filler material property, complex filler, and extending the force source pile length.
539

Investigations of Strongly Charge Transfer Molecules Using Nonlinear Optical Scattering and Absorption

Tai, Yung-hui 19 January 2005 (has links)
This thesis provides an extensive study of the first molecular hyperpolarizability b of charge-transfer chromophores using hyper-Rayleigh scattering (HRS). The charge-transfer chromophores used in present work involve the tricyanohydrofuran¡]TCF¡^group as an electron acceptor, and/or thiophene in the pi-electron bridge. TCF is a very strong electron acceptor and thiophene greatly lowers the resonance energy. Their presence significantly increases the beta value of the chromophore, therefore enhancing potentials in applications. In hyper-Rayleigh scattering experiments, the laser radiation with tunable wavelengths is used as an excitation source for measuring the frequency dependence of beta. The experiment shows beta exhibiting a significant dispersion in the two-photon resonance region. Using the linear absorption spectrum in coordination with theory, we show that it is possible to use Kramers-Kronig (K-K) transform to reproduce the experimental beta value in the two-photon resonance region. The K-K approach provides an extension to the conventional Oudar-Chemla equation, which is invalid in the spectral region in which two-photon resonance occurs. Using the new approach, it is shown that reliable values of intrinsic hyperpolarizabilities beta_zero of charge-transfer chromophores can be extracted. The coordination of beta_zero with molecular structure provides one with an insight for the origin of the enhancement of the first molecular hyperpolarizability of charge-transfer chromophores. This thesis examines the variation of beta_zero with molecular structure. The same technique is also applied to a dendrimer that has charge-transfer nonlinear optical chromophores incorporated in the dendritic structure. The measured frequency dependent hyperpolarizability of the dendrimer is compared with that calculated from the linear absorption spectrum by the KK transform technique. The intrinsic hyperpolarizability beta_zero of the dendrimer obtained is compared with that of the single chromophore having a structure similar to that incorporated in the dendrimer. The comparison shows that the 3D dendritic structure is effective in reducing the interaction between chromophores by providing sufficient space between them, hence avoiding the possibility of aggregation formation due to attractive interactions between chromophores. The topic of two-photon fluorescence (TPF), which is related to HRS, is also investigated. The intensity of TPF is generally proportional to the square of the incident excitation intensity. Careful measurements of the TPF intensity of a nonlinear optical chromophore in conjunction with required auxiliary parameters have been used as a technique for determining the two-photon absorption cross-section. The TPF intensity measurement carried out in this thesis uses a variety of intensities. At low intensity excitation, the TPF intensity follows the usual quadratic intensity law (QIL), whereas deviations from the QIL are observed at higher incident intensities. The observation of similar lineshape associated with one- and two-photon fluorescence spectra suggests a 3-level model for the description of TPF excited by the incident intensity at various strengths. It is shown that by fitting the observed TPF intensity to an equation developed from the three-level model, it is possible to deduce the two-photon absorption cross section of the nonlinear optical chromophore in solution. The new technique developed using the three-level model is tested on a Rhodamine B/Chloroform solution. The two-photon absorption cross-section obtained by using the new technique is found in agreement with that reported in the literature. Having demonstrated the suitability of the new technique, it is used to determine the two-photon absorption cross-section of a novel nonlinear optical chromophore. The two-photon absorption cross-section using the new technique is then compared with that obtained by the nonlinear transmittance method. The two results are in good agreement, indicating the applicability of the new technique. The new technique is more convenient than the conventional low excitation TPF method as it does not require various auxiliary parameters, some of them are difficult to obtain. The second harmonic generation (SHG) of a chromophore/polymer film which is optically poled by using a coherent superposition of a fundamental and its second harmonic beams. The growth rate of the SHG intensity is found to be proportional to the fourth power of the incident intensity of the fundamental beam, and the plateau intensity SHG is proportional to the square of the incident intensity. These observations are not in agreement with the published theory. While the reason for disagreement is yet to be clarified, the information obtained is useful for the development of nonlinear optical devices.
540

In-process sensing of weld penetration depth using non-contact laser ultrasound system

Rogge, Matthew Douglas 16 November 2009 (has links)
Gas Metal Arc Welding (GMAW) is one of the main methods used to join structural members. One of the largest challenges involved in production of welds is ensuring the quality of the weld. One of the main factors attributing to weld quality is penetration depth. Automatic control of the welding process requires non-contact, non-destructive sensors that can operate in the presence of high temperatures and electrical noise found in the welding environment. Inspection using laser generation and electromagnetic acoustic transducer (EMAT) reception of ultrasound was found to satisfy these conditions. Using this technique, the time of flight of the ultrasonic wave is measured and used to calculate penetration depth. Previous works have shown that penetration depth measurement performance is drastically reduced when performed during welding. This work seeks to realize in-process penetration depth measurement by compensating for errors caused by elevated temperature. Neuro-fuzzy models are developed that predict penetration depth based on in-process time of flight measurements and the welding process input. Two scenarios are considered in which destructive penetration depth measurements are or are not available for model training. Results show the two scenarios are successful. When destructive measurements are unavailable, model error is comparable to that of offline ultrasonic measurements. When destructive measurements are available, measurement error is reduced by 50% compared to offline ultrasonic measurements. The two models can be effectively applied to permit in-process penetration depth measurements for the purpose of real-time monitoring and control. This will reduce material, production time, and labor costs and increase the quality of welded parts.

Page generated in 0.0267 seconds