Spelling suggestions: "subject:"c.reaction dynamics"" "subject:"ionreaction dynamics""
41 |
Effet des forces de van der Waals sur la dynamique de l'azote et de l'hydrogène en interaction avec la surface de W(100) / Influence of van der Waals forces in the dynamics of nitrogen and hydrogen in interaction with W(100) surfaceIbargüen becerra, César 28 November 2019 (has links)
Une littérature scientifique nourrie est consacrée aux processus élémentaires hétérogènes se produisant à l’interface gaz-solide en raison de leur rôle clé dans de nombreux domaines. Ainsi, l’interaction d’atomes et de molécules avec les surfaces revêt une importance primordiale dans l’étude de la catalyse hétérogène, la combustion, la corrosion, le stockage de l’hydrogène, l’industrie automobile et pétrolière, les interactions plasma/paroi dans le contexte du réacteur expérimental thermonucléaire (ITER), les technologies du spatial, la chimie atmosphérique et l’astrochimie, pour citer quelques exemples. Lorsqu'un atome ou une molécule entre en collision avec une surface, de nombreux processus élémentaires peuvent avoir lieu. Ils dépendent de nombreux facteurs tels que : l'énergie de collision du projectile, l'angle d'incidence sur la surface, la température de surface, l'état initial le des molécules, le transfert d'énergie entre la surface des projectiles, etc… Tous ces facteurs influencent fortement les mécanismes réactionnels et la dynamique de ces processus. Les expériences de faisceaux moléculaires permettent un contrôle toujours plus précis de l'état initial des réactifs associé à un caractérisation fine des produits de réactions. Cependant, dans la plupart des cas, ces observations expérimentales ne fournissent pas tous les détails qui nous permettent de décrire finement les mécanismes gouvernant les processus élémentaires étudiés. Par conséquent, l'élaboration de modèles théoriques devient essentielle pour en rationaliser la description. L'objectif principal de ce travail de thèse est de proposer une analyse de la dynamique de plusieurs processus élémentaires pouvant se produire sur une surface de W(100) en contact avec de l'hydrogène et de l'azote (diffusion inélastique de N2 et H2, l'adsorption dissociative et non dissociative de H2 et l'adsorption et l'absorption de H et N). Par rapport aux études antérieures, la nouveauté de ce travail réside dans la prise en compte des interactions à longue distance de type van der Waals, qui s’avèrent essentielles lorsqu'on souhaite atteindre un bon accord théorie expérience dans le régime des faibles énergies de collision. Les résultats sont comparés aux données expérimentales disponibles et aux résultats théoriques antérieurs. Des simulations de dynamique moléculaire quasi-classique sont réalisés à l'aide de surfaces d'énergie potentielle (PES) basées sur la théorie de la fonctionnelle de la densité, tenant compte d’interactions non locales, telles que les forces de van der Waals. La dissipation de l’énergie aux vibrations du réseau et aux excitations électroniques est prise en compte au moyen de modèles effectifs. / An important part of scientific literature is devoted to the heterogeneous elementary processes occurring at gas-solid interface due to their great importance and key role in many different domains and applications. Thus, interaction of gas atoms/molecules with surface reactions are of primary importance in the study of: heterogeneous catalysis, combustion of solid fuel and coal gasification, processes of corrosion, hydrogen storage in solid material, automotive and oil industry, plasma-wall interactions in the context of thermonuclear experimental reactor (ITER), atmospheric re-entries technologies and astrochemistry, to name some examples. When an atom or molecule impinges on a surface many different elementary processes can take place, which depends on factors such as: the collision energy of the projectile, the angle of incidence to the surface, the surface temperature, the initial state of the molecules, the transference of energy projectiles-surface, etc. All these factors determines the mechanisms of reaction and the dynamics of the processes. Experimental molecular beams (MB) and other experimental techniques are able to accurately control the initial state of the reactive and characterizing products of gas-surface reactions. However, in most of the case experimental techniques do not provide enough details about the mechanisms through which elementary processes occur. Consequently, theoretical models becomes essential to rationalize the description that in certain cases the experiments do not reach.The main goal of this thesis work is to propose an analyze of the dynamics of several elementary processes occurring on a W(100) surface, such as: the inelastic scattering of N2 and H2, the dissociative and non-dissociative adsorption of of H2 and the adsorption and absorption of H and N. Compared to previous studies, the novelty of this work resides in the taking into account of van der Waals long-distance interactions, which are essential to reach a good agreement between theoretical and experiment results, especially at low collision energy regime. To rationalize the non-adiabatic effects, the energy dissipation to lattice vibrations and electronic excitation are taken in to account by means of GLO and LDFA models respectively.
|
42 |
A tale of two spins : electron spin centre assemblies with N@C60 for use in QIPFarrington, Benjamin Joseph January 2014 (has links)
Quantum information processing (QIP) has the potential to reduce the complexity of many classically ‘hard’ computational problems. To implement quantum information algorithms, a suitable physical quantum computer architecture must be identified. One approach is to store quantum information in the electron spins of an array of paramagnetic N@C<sub>60</sub> endohedral fullerene molecules, using the electron-electron dipolar interaction to permit the formation of the entangled quantum states needed to implement QIP. This thesis explores two different chemical methods to create two-spin centre arrays that contain N@C<sub>60</sub>. The first method uses a double 2,3 dipolar cycloaddition reaction to a dibenzaldehyde-terminated oligo-p-phenylene polyethynylene (OPE) unit , to create an (S<sub>3/2</sub>, S<sub>3/2</sub>) N@C<sub>60</sub>-N@C<sub>60</sub> dimer with a fixed spin centre separation of 2.7 nm. The second approach is via a self-assembly scheme in which a Lewis base functionalised N@C<sub>60</sub> molecule coordinates to an antiferromagnetic metallic ring magnet to form a (S<sub>3/2</sub>, S<sub>3/2</sub>) two-spin centre N@C<sub>60</sub>-Cr<sub>7</sub>Ni system with an inter-spin separation of 1.4 nm. In both systems, a significant perturbation of the electron spin transition energies is observed using CW ESR, this perturbation is shown to be well accounted for by the inclusion of an electron-electron dipolar coupling term in the electron spin Hamiltonians. To create entanglement in an ensemble of two-spin centre molecules, the dipolar coupling interaction must lie within a narrow distribution. To achieve this not only the separation but also the orientation of the inter-spin axis with respect to the applied magnetic field must be controlled for which a method of macroscopic alignment is required. The potential of using a uniaxially drawn liquid crystal elastomer to exert uniaxial order on fullerene dimers is tested, finding that the degree of alignment is insufficient, possibly a result of the propensity for the fullerene molecules to phase separate from the elastomer. This phase separation is shown to restrict N@C<sub>60</sub> phase coherence lifetime to 1.4 µs at 40 K due to instantaneous spin diffusion. The electron spin environment of both N@C<sub>60</sub> and an N@C<sub>60</sub>-C<sub>60</sub> dimer in a polymer matrix is examined using polystyrene as the host matrix. By deuteration of the polystyrene matrix, a maximum phase coherence lifetimes of 48 µs and 21 µs are measured for the N@C<sub>60</sub> and N@C<sub>60</sub>-C<sub>60</sub> dimer, respectively. The concept of reading out the electron spin state of N@C<sub>60</sub> molecules by coupling it to a spin system that can be probed using optically detected magnetic resonance (ODMR) such as an NV- centre has been previously suggested. To this end, the photostability of N@C<sub>60</sub> under 637 nm laser illumination has been examined in solution. The effect of the presence of an atmospheric concentration of oxygen is striking, affording a 57-fold retardation in the photodecomposition of N@C<sub>60</sub> compared to a degassed solution. When ambient oxygen is present, the average number of excitations that are required to cause decomposition is ≈60000. Finally, for future UV photophysics experiments involving N@C<sub>60</sub>, the best solvent to use was found to be decalin, finding that it significantly slowed decomposition of N@C<sub>60</sub> in both ambient and degassed solutions. The conclusions of this work make a significant contribution to the field of QIP with N@C<sub>60</sub>, showing that there is a bright future for N@C<sub>60</sub>.
|
43 |
Studies of photoinduced molecular dynamics using a fast imaging sensorSlater, Craig Stephen January 2013 (has links)
Few experimental techniques have found such a diverse range of applications as has ion imaging. The field of chemical dynamics is constantly advancing, and new applications of ion imaging are being realised with increasing frequency. This thesis is concerned with the application of a fast pixelated imaging sensor, the Pixel Imaging Mass Spectrometry (PImMS) camera, to ion imaging applications. The experimental possibilities of such a marriage are exceptionally broad in scope, and this thesis is concerned with the development of a selection of velocity-map imaging applications within the field of photoinduced molecular dynamics. The capabilities of the PImMS camera in three-dimensional and slice imaging applications are investigated, in which the product fragment Newton-sphere is temporally stretched along the time-of-flight axis, and time-resolved slices through the product fragment distribution are acquired. Through experimental results following the photodissociation of ethyl iodide (CH<sub>3</sub>CH<sub>2</sub>I) at around 230 nm, the PImMS camera is demonstrated to be capable of recording well-resolved time slices through the product fragment Newton-sphere in a single experiment, without the requirement to time-gate the acquisition. The various multi-hit capabilities of the device represent a unique and significant advantage over alternative technologies. The details of a new experiment that allows the simultaneous imaging of both photoelectrons and photoions on a single detector for each experimental acquisition cycle using pulsed ion extraction are presented. It is demonstrated that it is possible to maintain a high velocity resolution using this approach through the simultaneous imaging of the photoelectrons and photoions that result from the (3 + 2) resonantly enhanced multi-photon ionisation of Br atoms produced following the photodissociation of Br<sub>2</sub> at 446.41 nm. Pulsed ion extraction represents a substantial simplification in experimental design over conventional photoelectron-photoion coincidence (PEPICO) imaging spectrometers and is an important step towards performing coincidence experiments using a conventional ion imaging apparatus coupled with a fast imaging detector. The performance of the PImMS camera in this application is investigated, and a new method for the determination of the photofragment detection efficiencies based on a statistical fitting of the coincident photoelectron and photoion data is presented. The PImMS camera is applied to laser-induced Coulomb explosion imaging (CEI) of an axially chiral substituted biphenyl molecule. The multi-hit capabilities of the device allow the concurrent detection of individual 2D momentum images of all ionic fragments resulting from the Coulomb explosion of multiple molecules in each acquisition cycle. Correlations between the recoil directions of the fragment ions are determined through a covariance analysis. In combination with the ability to align the molecules in space prior to the Coulomb explosion event, the experimental results demonstrate that it is possible to extract extensive information pertaining to the parent molecular structure and fragmentation dynamics following strong field ionisation. Preliminary simulations of the Coulomb explosion dynamics suggest that such an approach may hold promise for determining elements of molecular structure on a femtosecond timescale, bringing the concept of the `molecular movie' closer to realisation. Finally, the PImMS camera is applied to the imaging of laser-induced torsional motion of axially chiral biphenyl molecules through femtosecond Coulomb explosion imaging. The target molecules are initially aligned in space using a nanosecond laser pulse, and torsional motion induced using a femtosecond 'kick' pulse. Instantaneous measurements of the dihedral angle of the molecules are inferred from the correlated F+ and Br+ ion trajectories following photoinitiated Coulomb explosion at various time delays after the initial kick pulse. The technique is extended to include a second kick pulse, in order to achieve either an increase in the amplitude of the oscillations or to damp the motion, representing a substantial degree of control of the system. Measurements out to long kick-probe delays (200 ps) reveal that the initially prepared torsional wave packet periodically dephases and rephases, in accordance with the predictions of recent theoretical work.
|
44 |
Angular momentum polarisation effects in inelastic scatteringChadwick, Helen J. January 2012 (has links)
In this thesis, a joint experimental and theoretical investigation of the vector properties that describe the inelastic scattering of a diatomic radical with an atomic collision partner is presented. A particular emphasis is placed on those correlations that include the final rotational angular momentum, j', of the radical. The depolarisation of both NO(A) and OH(A) brought about through collisions with krypton has been studied, providing a measure of the j-j' correlation, where j is the initial rotational angular momentum associated with the diatom. The total depolarisation cross- sections for both collisional disorientation and disalignment have been measured using quantum beat spectroscopy, and modelled theoretically using quasi-classical trajectory (QCT) calculations. The agreement between experiment and theory for NO(A)-Kr is excellent, but is not observed for OH(A)-Kr under thermal conditions. This has been attributed to the importance of electronic quenching in OH(A)-Kr. The depolarisation cross-sections have also been determined at a higher collision energy for OH(A)-Kr where electronic quenching is less significant, and the experimental results are in better agreement with those obtained theoretically. The NO(A)-Kr depolarisation cross-sections fall with increasing rotational quantum number, N, whereas for OH(A)-Kr, they exhibit less of an N dependence. This trend is mirrored in the elastic depolarisation cross-sections, which have also been determined experimentally for OH(A)-Kr. The significantly attractive and anisotropic nature of the OH(A)-Kr potential energy surface (PES) accounts for these observations. The j-j' correlation is extended to include the initial (relative) velocity (k) in a new theoretical treatment of the k-j-j' correlation. The formalism developed is used with the results from the QCT calculations for NO(A)-Kr and OH(A)-Kr to provide further insight into the mechanism of depolarisation in the two systems. Collisions of NO(A) with krypton do not cause significant depolarisation due to their impulsive nature, and the projection of j onto the kinematic apse is conserved. In contrast, collisions of OH(A) with krypton effectively randomise the direction of j, again showing the influence of the anisotropic and attractive nature of the PES. However, the projection of j onto the kinematic apse is still conserved. The inelastic scattering of NO(X) with argon and krypton has also been investigated, using a crossed molecular beam apparatus. The initial Λ-doublet state of the NO(X) was selected using hexapole focussing, and the products of the collision detected using velocity mapped ion imaging. The state to state differential cross-sections (equivalent to the k-k' correlation, where k' is the final relative velocity) have been measured for collisions which conserve the initial spin-orbit level of the NO(X) with krypton. The same parity dependent effects were seen as have been observed previously for NO(X)-Ar. The collision induced alignment (equivalent to the k-k'-j' correlation) of NO(X) as a result of scattering with argon has also been determined experimentally. The results can be explained classically by considering the conservation of the projection of j onto the kinematic apse.
|
45 |
Reduced dimensionality quantum dynamics of chemical reactionsRemmert, Sarah M. January 2011 (has links)
In this thesis a reduced dimensionality quantum scattering model is applied to the study of polyatomic reactions of type X + CH4 <--> XH + CH3. Two dimensional quantum scattering of the symmetric hydrogen exchange reaction CH3+CH4 <--> CH4+CH3 is performed on an 18-parameter double-Morse analytical function derived from ab initio calculations at the CCSD(T)/cc-pVTZ//MP2/cc-pVTZ level of theory. Spectator mode motion is approximately treated via inclusion of curvilinear or rectilinear projected zero-point energies in the potential surface. The close-coupled equations are solved using R-matrix propagation. The state-to-state probabilities and integral and differential cross sections show the reaction to be primarily vibrationally adiabatic and backwards scattered. Quantum properties such as heavy-light-heavy oscillating reactivity and resonance features significantly influence the reaction dynamics. Deuterium substitution at the primary site is the dominant kinetic isotope effect. Thermal rate constants are in excellent agreement with experiment. The method is also applied to the study of electronically nonadiabatic transitions in the CH3 + HCl <--> CH4 + Cl(2PJ) reaction. Electrovibrational basis sets are used to construct the close-coupled equations, which are solved via Rmatrix propagation using a system of three potential energy surfaces coupled by spin-orbit interaction. Ground and excited electronic surfaces are developed using a 29-parameter double-Morse function with ab initio data at the CCSD(T)/ccpV( Q+d)Z-dk//MP2/cc-pV(T+d)Z-dk level of theory, and with basis set extrapolated data, both corrected via curvilinear projected spectator zero-point energies. Coupling surfaces are developed by fitting MCSCF/cc-pV(T+d)Z-dk ab initio spin orbit constants to 8-parameter functions. Scattering calculations are performed for the ground adiabatic and coupled surface models, and reaction probabilities, thermal rate constants and integral and differential cross sections are presented. Thermal rate constants on the basis set extrapolated surface are in excellent agreement with experiment. Characterisation of electronically nonadiabatic nonreactive and reactive transitions indicate the close correlation between vibrational excitation and nonadiabatic transition. A model for comparing the nonadiabatic cross section branching ratio to experiment is discussed.
|
46 |
Condensed-phase applications of cavity-based spectroscopic techniquesNeil, Simon R. T. January 2012 (has links)
This thesis describes the development and application of condensed-phase cavity-based spectroscopic techniques - namely cavity ring-down spectroscopy (CRDS); cavity enhanced absorption spectroscopy (CEAS); broadband cavity enhanced absorption spectroscopy (BBCEAS) and evanescent wave (EW) variants of all three. The recently-developed cavity technique of EW-broadband cavity enhanced absorption spectroscopy (EW-BBCEAS) has been used—in combination with a supercontinuum source (SC) and a sensitive, fast readout CCD detector—to record of the full visible spectrum (400–700 nm) of a silica-liquid interfacial layer (with an effective thickness ca. 1 µm), at rapid acquisition rates (> 600 Hz) that are sufficient to follow fast kinetics in the condensed phase, in real time. The sensitivity achieved (A<sub>min</sub>= 3.9 x 10<sup>-5</sup>) is comparable with previous EW-CRDS and EW-CEAS studies, but the spectral region accessed in this broadband variant is much larger. The study of liquid|air interfaces using EW cavity-based techniques is also illustrated for the first time. The first application of BBCEAS to the analysis of microfluidic samples, flowing through a microfluidic chip, is illustrated. Proof-of-principle experiments are presented, demonstrating the technique’s ability to provide full visible broadband spectral measurements of flowing microfluidic droplets, with both high detection sensitivity (α<sub>min</sub> < 10<sup>-2</sup> cm<sup>-1</sup>) and excellent spatial and temporal resolution: an SC light source and sensitive, fast readout CCD allowed measurement repetition rates of 273 Hz, whilst probing a very small sample volume (ca. 90 nL). A significant portion of this thesis is devoted to demonstrating the powerful capabilities of CEAS, CRDS and BBCEAS in monitoring radical recombination reactions and associated magnetic field effects (MFEs) in solution. The efficacy of CEAS as a high-sensitivity MFE detection method has been established in a proof-of-principle study, using narrow band CEAS in combination with phase-sensitive detection: MFE-induced absorbance changes of ca. 10<sup>-6</sup> could be detected using the modulated CEAS technique and the data are shown to be superior to those obtained using conventional transient absorption (TA) methods typically employed for MFE measurements. The powerful capabilities of CRDS in monitoring radical recombination reactions and associated MFEs are also demonstrated. In particular, a pump-probe CRDS variant allows not only high sensitivity (A<sub>min</sub> on the order 10<sup>-6</sup>), but also sub-microsecond time-resolution. Combined, these features represent significant advantages over TA. Finally, SC-BBCEAS is used to measure full visible spectra of photoinduced reactions and their MFEs. The applicability of this approach to in vitro MFE studies of Drosophila cryptochrome is demonstrated—the results mark the first in vitro observation of a magnetic field response in an animal cryptochrome, a key result supporting the hypothesis that cryptochromes are involved in the magnetic sense in animals.
|
47 |
Photofragment velocity-map imaging of organic moleculesGardiner, Sara Heather January 2014 (has links)
Photofragment velocity-map imaging (VMI) has generally been employed to investigate the photodissociation dynamics of relatively small molecular systems (< 5 atoms). The work reported in this thesis focuses on the application of this technique for the investigation of the unimolecular photodissociation of larger chemical systems, which are of interest to a broad cross section of the chemical community. Typically, VMI studies involve state-selective detection of one particular fragmentation product, and so are often limited to the investigation of a single dissociation channel. By employing vacuum ultra-violet (VUV) photoionization, we are able to detect most, if not all of the fragments resulting from the dissociation of a neutral species, with ‘universal’ ionization being achieved in the ideal case when the fragment ionization energies are all lower than the VUV photon energy. This capability becomes particularly important when investigating larger systems, since these often display complex dynamics with multiple competing fragmentation pathways. Our approach allows us to investigate the different photofragmentation processes occurring for a particular system, to evaluate the relative importance of the active dissociation channels, and to gain insight into the energy partitioning amongst the fragments. A study of the UV photodissociation of two neutral alkyl iodide molecules demonstrates the first use in our laboratory of ‘universal’ ionization in combination with VMI. Studies into the photofragmentation processes resulting from 193 nm photoexcitation of neutral N,N-dimethylformamide, a small-molecule model for a peptide bond, and a number of neutral cyclic alkenes, which undergo the retro-Diels-Alder reaction, are also presented. The remaining studies presented in this thesis have investigated the photofragmentation processes of ionic species, generated by means of VUV photoionization. In the case of ion dissociation each fragmentation channel necessarily produces one charged species, which may be detected using the VMI technique. Therefore, such studies provide an insight into all of the active channels. An in-depth VMI study of the UV photodissociation of two ethyl halide cations is presented, which demonstrates the successful investigation of the multiple photofragmentation pathways of these ionic species. The remainder of the cation photodissociation studies are of relevance to a number of common processes known to occur in mass spectrometry, including the McLafferty rearrangement, the retro-Diels-Alder reaction, and ‘peptide’ bond fragmentation. By velocity-map imaging the products of these reactions, further information is obtained concerning these dissociation processes, which are no doubt of interest to the wider chemical community. This work forms part of the velocity-map imaging mass spectrometry (VMImMS) project. VMImMS involves imaging each of the fragmentation products that result from dissociation of a parent molecule of interest, with the aim of increasing the amount of information that can be obtained from a mass-spectrometry-type experiment. The work presented in this thesis demonstrates that VMImMS allows us to unravel details of the dissociation dynamics of both neutral and ionic species, and is potentially a powerful technique for investigating the fragmentation processes of increasingly complex systems.
|
48 |
Novel probes of angular momentum polarizationChang, Yuan-Pin January 2010 (has links)
New dynamical applications of quantum beat spectroscopy (QBS) to molecular dynamics are employed to probe the angular momentum polarization effects in photodissociation and molecular collisions. The magnitude and the dynamical behaviour of angular momentum alignment and orientation, two types of polarization, can be measured via QBS technique on a shot-by-shot basis. The first part of this thesis describes the experimental studies of collisional angular momentum depolarization for the electronically excited state radicals in the presence of the collider partners. Depolarization accompanies both inelastic collisions, giving rise to rotational energy transfer (RET), and elastic collisions. Experimental results also have a fairly good agreement with the results of quasi-classical trajectory scattering calculations. Chapter 1 provides the brief theories about the application of the QBS technique and collisional depolarization. Chapter 2 describes the method and instrumentation employed in the experiments of this work. In Chapter 3, the QBS technique is used to measure the total elastic plus elastic depolarization rate constants under thermal conditions for NO(A,v=0) in the presence of He, Ar, N2, and O2. In the case of NO(A) with Ar, and particularly with He, collisional depolarization is significantly smaller than RET, reflecting the weak long-range forces in these systems. In the case of NO(A)+N2/O2, collisional depolarization and RET are comparable, reflecting the relatively strong long-range forces in these systems. In Chapter 4, the QBS technique is used to measure the elastic and inelastic depolarization and total RET rate constants for OH(A,v=0) under thermal conditions in the presence of He and Ar, as well as the total depolarization rate constants under superthermal conditions. In the case of OH(A)+He, elastic depolarization is sensitive to the N rotational state, and inelastic depolarization is strongly dependent on the collision energy. In the case of OH(A)+Ar, elastic depolarization is insensitive to N, and inelastic depolarization is less sensitive to the collision energy, reflecting that the relatively strong long-range force in OH(A)+Ar system. The second part of this thesis describes the experimental studies of photodissociation under thermal conditions. Chapter 5 provides a brief introduction about several polarization parameter formalisms used for photodissociation, and the incorporation of the QBS technique to measure these polarization parameters. In this thesis, most polarization parameters of the molecular photofragments are measured using the LIF method, and the QBS technique is used as a complementary tool to probe these polarization parameters. In Chapter 6, rotational orientation in the OH(X,v=0) photofragments from H2O2 photodissociation using circularly polarized light at 193 nm is observed. Although H2O2 can be excited to both the A and B electronic states by 193 nm, the observed orientation is only related to the A state dynamics. A proposed mechanism about the coupling between a polarized photon and the H2O2 parent rotation is simulated, and the good agreement between the experimental and simulation results further confirms the validity of this mechanism. In Chapter 7, rotational orientation in the NO(X,v) photofragments from NO2 photodissociation using circularly polarized light at 306 nm (v=0,1,2) and at 355 nm (v=0,1) is observed. Two possible mechanisms, the parent molecular rotation and the coherent effect between multiple electronic states, are discussed. NOCl is photodissociated using circularly polarized light at 306 nm, and NO(X,v) rotational distributions (v=0,1) and rotational orientation (v=0) are measured. For the case of NOCl, the generation of orientation is attributed to the coherent effect.
|
49 |
Combination of a cold ion and cold molecular sourceOldham, James Martin January 2014 (has links)
This thesis describes the combination of two sources of cold atomic or molecular species which can be used to study a wide range of ion-molecule reactions. The challenges in forming these species and in determining the fate of reactive events are explored throughout. Reactions occur in a volume within a radio-frequency ion trap, in which ions have previously been cooled to sub-Kelvin temperatures. Ions are laser-cooled, with migration of ions slowed sufficiently to form a quasi-crystalline spheroidal structure, deemed a Coulomb crystal. Fluorescence emitted as a consequence of laser-cooling is detected; the subsequent fluorescence profiles are used to determine the number of ions in the crystal and, in combination with complementary simulations, the temperature of these ions. Motion imparted by trapping fields can be substantial and simulations are required to accurately determine collision energies. A beam of decelerated molecules is aimed at this stationary ion target. An ammonia seeded molecular beam enters a Stark decelerator, based on the original design of Meijer and co-workers. The decelerator uses time-varying electric fields to remove kinetic energy from the molecules, which exit at speeds down to 35 m/s. A fast-opening shutter and focussing elements are subsequently used to maximise the decelerated flux in the reaction volume while minimising undecelerated molecule transmission. Substantial fluxes of decelerated ammonia are obtained with narrow velocity distributions to provide a suitable source of reactant molecules. Combination of these two techniques permits studies of reactions between atomic ions and decelerated molecules that can be entirely state-specific. Changes in the Coulomb crystal fluorescence profile denote changes in the ion identities, the rate of these changes can be used to obtain rate constants. Determination of rate constants is even possible despite the fact that neither reactant nor product ions are directly observed. This work has studied reactions between sympathetically cooled Xe<sup>+</sup> ions and guided ND3 and has obtained data consistent with prior studies. Determination of reactive events is complicated if ion identities can change without affecting the fluorescence profile, or if multiple reaction channels are possible. A range of spectroscopic techniques are discussed and considered in regards to determining rate constants and product identities. Pulsed axial excitation of trapped ions can follow rapid changes in average ion weights and subtle changes for small crystals. Time-of-flight mass spectrometry is also demonstrated using the trapping electrodes and is suitable for discrimination of ions formed within the trap.
|
50 |
The rational design of photocatalytic semiconductor nanocrystalsEley, Clive William January 2014 (has links)
This thesis reports the successful rational design of three highly active photocatalytic semiconductor nanocrystal (SNC) systems by exploiting morphology effects and the electronic properties of type II semiconductor heterojunctions. Novel architectures of colloidal SNCs are produced with the aim of suppressing exciton recombination and improving charge extraction for the successful initiation of desirable redox chemistry. Rod-shaped niobium pentoxide Nb<sub>2</sub>O<sub>5</sub> nanocrystals (NCs) are shown to exhibit significantly enhanced activity (10-fold increase in rate constant) relative to spherical-shaped NCs of the same material. The increase is attributed to Nb5<sup>+</sup> Lewis acid site rich (001) surfaces, present in higher proportions in the rod morphology, which bind organic substrates from solution resulting in direct interaction with photogenerated charges on the surface of the NC. Building on the insights into morphology-activity dependence, type II semiconductor heterojunctions are exploited for their ability to increase exciton lifetimes and spatially separate charges. Two novel II-VI heterostructured semiconductor nanocrystals (HSNCs) systems are investigated: a series of CdX/ZnO (X = S, Se, Te) HSNCs and ZnS/ZnO HSNCs capped with two different surface ligands. In the first case, substantial photocatalytic activity improvement is observed for HSNCs (relative to pure ZnO analogues) according to the following trend: CdTe/ZnO > CdS/ZnO > CdSe/ZnO. The observed trend is explained in terms of heterojunction structure and fundamental chalcogenide chemistry. In the second case, both ZnS/ZnO HSNCs exhibit activity enhancement over analogous pure ZnO, but the degree of enhancement is found to be a function of surface ligand chemistry. Photocatalytic activity testing of all the materials investigated in this work is performed via the photodecomposition of methylene blue dye in aerated aqueous conditions under UVA (350 nm) irradiation. The synthetic techniques employed for the synthesis of colloidal SNCs investigated in this thesis range from chemical precipitation and solvothermal techniques to several different organometallic approaches. A wide variety of analytical techniques are employed for the chemical, structural and optical characterisation of SNC photocatalysts including: XRD, XPS, TEM, UV-vis absorption, PL spectroscopy and FTIR. Atom Probe Tomography (APT) is employed for the first time in the structural characterisation of II-VI heterojunctions in colloidal HSNCs. Overall, this thesis provides a useful contribution to the growing body of knowledge pertaining to the enhancement of photocatalytic SNCs for useful applications including: solar energy conversion to chemical fuels, the photodecomposition of pollutants and light-driven synthetic chemistry.
|
Page generated in 0.0693 seconds