• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application des trajectoires quantiques Bohmiennes à la dynamique de processus dissociatifs non-adiabatiques

Julien, Jérôme 14 December 2005 (has links) (PDF)
Il est peu connu que les problèmes de dynamique quantique peuvent être résolus au moyen de trajectoires, issues de l'interprétation Bohmienne de la mécanique quantique. La propagation numérique de ces trajectoires quantiques constitue cependant un véritable défi, du fait de la difficulté d'évaluer précisément les dérivées spatiales mises<br />en jeu dans les équations. Dans cette thèse nous présentons des approximations permettant de propager les trajectoires quantiques sans instabilités numériques. Nous nous intéressons particulièrement aux systèmes constitués de plusieurs états électroniques couplés. D'une part, nous développons une approximation semi-classique qui découple partiellement la propagation des trajectoires des transitions<br />inter-états. D'autre part, nous appliquons aux systèmes à plusieurs états une reformulation des équations hydrodynamiques en termes de dérivées spatiales. Dans les deux cas, le formalisme est établi puis appliqué numériquement à des processus modèles.
2

Nouvelles perspectives dans les traitements classique et semiclassique de la dynamique réactionnelle / New insights into the classical and semiclassical treatments of chemical reaction dynamics

Arbelo Gonzalez, Wilmer 15 November 2013 (has links)
La théorie de la dynamique des processus chimiques élementaires cherche à décrire quantitativement les collisions réactives à l'échelle atomique. Les mouvements des noyaux étant extrêmement difficiles à traiter dans le formalisme quantique, les tomes sont souvent considérés comme des objets classiques. Cepandant, les effets purement quantiques jouent un rôle majeur dans certaines situations, alors que la description classique les néglige. Cette thèse apporte de nouvelles perspectives sur l'inclusion, dans le formalisme clasique, de forts effets quantiques, à savoir la quantification des mouvements internes des réactifs et produits. / The goal of chemical reaction dynamics theory is the quantitative description of reactive molecular collistions at the atomic scale. Since nuclear motions are difficult to study quantum mechanically, nuclei are often considered as classical object. However, quantum effects may play a major role in some situation, and the standard classical description does not take them into account. This thesis brings new perspectives on the inclusion into the classical treatment of one of the strongest qunatum effects, the quantization of reagents and products.
3

Approches statisticodynamiques de la réactivité chimique

González Martínez, Maykel Leonardo 28 January 2010 (has links)
La dissociation unimoléculaire de systèmes chimiques faiblement liés (molécules de van der Waals, HeBr2, NeBr2, ArBr2) et covalents (NCO, CH2CO) est étudiée au moyen de la méthode des trajectoires classiques et d’une approche statistique basée sur la théorie de l’état de transition. D’une part, l’apport de la procédure de pondération gaussienne appliquée à la détermination de distribution ro-vibrationnelles et d’énergie de translation, est illustrée. D’autre part, une transformation des coordonnées angle-action aux coordonnées cartésiennes, dans le cas général de fragments polyatomiques, ainsi que qu’une correction quasi-classique permettant d’incorporer la structure rotationnelle aux distributions résolues vibrationnellement, sont développées. Sur la base de ces développements, une méthodologie applicable aux processus polyatomiques indirects conduisant à une résolution ro-vibrationnelle complète sans nécessiter de procédures de pondération ou de binning, est présentée. / The quasi-classical trajectory method and statistical assumptions from the transition state theory are employed in the investigation of the unimolecular dissociation of weakly (van der Waals aggregates, i.e. HeBr2, NeBr2, ArBr2) and conventionally bound molecular systems (NCO, CH2CO). The capabilities of the Gaussian weighting procedure are illustrated through the reproduction of ro-vibrational and translational energy distributions. A transformation from angle-action variables to Cartesian coordinates is derived for the general case of polyatomic fragments. An alternative methodology is developed to study indirect polyatomic processes which provides complete ro-vibrational resolution while effectively avoids any binning or weighting procedure. The new algorithm is based on the transformation previously derived and an approximate formula developed to incorporate the rotational structures on the vibrationally-resolved quasi-classical distributions / El método de trayectorias cuasi-clasicas e hipotesis estadisticas de la teoria del estado de transicion, son empleados en la investigacion de la disociacion unimolecular de sistemas débil (agregados de van der Waals, i.e. HeBr2, NeBr2, ArBr2) y convencionalmente enlazados (NCO, CH2CO). Se demuestran las potencialidades del procedimiento de ponderacion gaussiana para la reproduccion de distribuciones ro-vibracionales y de energia de traslacion, en comparacion con las obtenidas por los métodos convencionales. Son desarrolladas la transformacion desde variables angulares y de accion a coordenadas cartesianas para el caso general de fragmentos poliatomicos, asi como un conjunto de expresiones cuasi-clasicas para incorporar estruturas rotacionales en las distribuciones resueltas vibracionalmente. Sobre la base de estos desarrollos, se demuestra y aplica una nueva metodologia para estudiar procesos poliatomicos indirectos con la que resulta posible obtener distribuciones téoricas con resolucion ro-vibracional total, evitando el uso de métodos de binning o ponderaciones.
4

Dynamique réactionnelle de Systèmes Complexes

Poisson, Lionel 23 May 2008 (has links) (PDF)
La dynamique réactionnelle est l'étude du comportement d'un système moléculaire, ou d'un ensemble de systèmes atomiques et moléculaires en réponse à une excitation externe photonique ou collisionnelle. Ces excitations localisent l'énergie déposée de manière différente, et peuvent être accompagnées du réaménagement de liaisons chimiques dans la molécule. Quelque soit le mode d'excitation choisi, ces réaménagements peuvent se réaliser selon un processus soit statistique, soit impulsionnel. Dans ce dernier cas, qui intervient dans toutes les dynamiques rapides (< 10 ps), les modifications structurales de la molécule ont lieu selon le ou les quelques degrés de libertés du système concernés par le processus d'excitation. Il s'agit donc d'une évolution directe ou l'énergie n'est pas thermodynamiquement équirépartie dans tous les modes de vibration de la molécule. Un système apriori complexe peut donc, dans le cadre d'une évolution très rapide où seules quelques coordonnées sont concernées, présenter une évolution obéissant à un modèle extrêmement simplifié. La dynamique réactionnelle a donc, en soi, pour but d'isoler les coordonnées par lesquelles se propage l'énergie déposée par le processus d'excitation.<br />L'objectif a été d'étudier des systèmes aussi proches possibles de problématiques liées à la chimie organique. Celle-ci présente certes des molécules à squelette carboné (voir chapitre « Molécules Organiques : un pas vers la photochimie organique »), mais aussi des intermédiaires réactionnels très réactifs (voir chapitre « Composés carbonés insaturés »). Plus généralement les réactions ont lieu dans un solvant, d'où l'intérêt d'en étudier l'influence de manière quantifiée. C'est la raison pour laquelle j'ai étudié des systèmes déposés sur agrégats afin de bénéficier de la puissance des techniques de la phase gazeuse tout en utilisant un solvant modèle et modifiable à volonté (voir chapitre « Solvatation des systèmes en phase gazeuse : effets de solvant»). Naturellement, cela m'a aussi conduit à étudier préalablement un certain nombre de problématiques liées à la structure électronique des agrégats (voir chapitre « Dynamique d'agrégats purs ») et à des systèmes modèles (voir chapitres « Molécules organiques : un pas vers la photochimie organique » et « Dynamique des systèmes modèles »). L'évolution de ce programme de recherche structure mon activité et détermine mes projets scientifiques.
5

Nouvelles perspectives dans les traitements classique et semiclassique de la dynamique réactionnelle

Arbelo Gonzalez, Wilmer 15 November 2013 (has links) (PDF)
La théorie de la dynamique des processus chimiques élementaires cherche à décrire quantitativement les collisions réactives à l'échelle atomique. Les mouvements des noyaux étant extrêmement difficiles à traiter dans le formalisme quantique, les tomes sont souvent considérés comme des objets classiques. Cepandant, les effets purement quantiques jouent un rôle majeur dans certaines situations, alors que la description classique les néglige. Cette thèse apporte de nouvelles perspectives sur l'inclusion, dans le formalisme clasique, de forts effets quantiques, à savoir la quantification des mouvements internes des réactifs et produits.
6

Dynamique des états excités d'intermédiaires organiques

Noller, Bastian 11 May 2009 (has links) (PDF)
Cette thèse donne des renseignements sur la dynamique réactionnelle en temps réel de plusieurs carbènes et radicaux organiques à des échelles de temps femtosecondes et nanosecondes. Les expériences ont été conduites sur des radicaux, des carbènes singulets et triplets de tailles variées. Des états excités de ces espèces et l'état fondamental des ions correspondants ont été caractérisés. Très peu de travaux sont disponibles dans la littérature sur ces composés, malgré leur rôle important dans presque toutes les réactions chimiques. Ceci est dû aux difficultés expérimentales pour les produire dans de bonnes conditions d'isolation. Ces intermédiaires ont été formés à partir de précurseurs moléculaires dans de bonnes conditions d'isolation par pyrolyse éclair en jet supersonique. Les précurseurs moléculaires ont été synthétisés et optimisés pour dissocier proprement dans les intermédiaires désirés, radicaux et carbènes. L'imagerie de vitesse est spécialement utile à cet effet. Les intermédiaires ainsi fabriqués ont été étudiés par des techniques spectroscopiques variées et complémentaires, ce qui a permis de réaliser l'objectif principal de cette thèse : comprendre leur dynamique dans des états électroniques excités. Ceux-ci se désactivent rapidement vers l'état fondamental chaud. Ceci est probablement dû à la forte densité des états excités dans ces systèmes, qui interagissent fortement entre eux par conversion interne et par intersection conique. Après cette relaxation, la dynamique, éventuellement réactionnelle, se poursuit sur l'état fondamental. Les études qui ont permis ces observations incluent des mesures de spectre d'absorption, de dynamiques de photodissociation et de photoionisation, de spectres de photoélectrons, d'énergie d'ionisation et de durée de vie des états excités. Des sources lumières pulsées et continues ont été utilisées à cet effet dans une grande gamme spectrale (UV, Vis et VUV). Ceci a permis de déposer une quantité d'énergie connue dans les systèmes étudiés ce qui, après conversion interne, génère un ensemble micro canonique de l'état fondamental. C'est ainse que nous avons pu étudier l'énergétique et les canaux réactifs des radicaux et carbènes organiques. Les résultats expérimentaux ont été comparés à des calculs de chimie quantique pour aider à leur interprétation et au test des performances des approches théoriques. Les radicaux et les carbènes organiques peuvent d'ailleurs être considérés comme des systèmes tests des méthodes de calculs, car ce sont des systèmes à couche ouverte possédant plusieurs états électroniques bas en énergie. Nos résultats expérimentaux sont à même d'aider à comprendre et à identifier la contribution des intermédiaires que nous avons étudiés à la chimie d'environnement très énergétiques comme ceux rencontré dans le cracking des hydrocarbures, la combustion ou la chimie interstellaire. De tels environnements contiennent en effet de nombreux intermédiaires très réactifs qui jouent un rôle clé dans le bilan chimique global du milieu. Mieux ces intermédiaires sont caractérisés sur le plan spectroscopique et dynamique, mieux ils peuvent être identifiés dans ces environnements complexes et mieux leur impact en termes de dynamique réactionnelle peut être apprécié. L'excitation électronique dans ces milieux est souvent le résultat d'absorption lumineuse, de collision à haute énergie et peut également être thermique à très forte température. Savoir comment l'excitation électronique influence les mécanismes réactionnels de milieux aussi complexes est encore un sujet ouvert.
7

Effet des forces de van der Waals sur la dynamique de l'azote et de l'hydrogène en interaction avec la surface de W(100) / Influence of van der Waals forces in the dynamics of nitrogen and hydrogen in interaction with W(100) surface

Ibargüen becerra, César 28 November 2019 (has links)
Une littérature scientifique nourrie est consacrée aux processus élémentaires hétérogènes se produisant à l’interface gaz-solide en raison de leur rôle clé dans de nombreux domaines. Ainsi, l’interaction d’atomes et de molécules avec les surfaces revêt une importance primordiale dans l’étude de la catalyse hétérogène, la combustion, la corrosion, le stockage de l’hydrogène, l’industrie automobile et pétrolière, les interactions plasma/paroi dans le contexte du réacteur expérimental thermonucléaire (ITER), les technologies du spatial, la chimie atmosphérique et l’astrochimie, pour citer quelques exemples. Lorsqu'un atome ou une molécule entre en collision avec une surface, de nombreux processus élémentaires peuvent avoir lieu. Ils dépendent de nombreux facteurs tels que : l'énergie de collision du projectile, l'angle d'incidence sur la surface, la température de surface, l'état initial le des molécules, le transfert d'énergie entre la surface des projectiles, etc… Tous ces facteurs influencent fortement les mécanismes réactionnels et la dynamique de ces processus. Les expériences de faisceaux moléculaires permettent un contrôle toujours plus précis de l'état initial des réactifs associé à un caractérisation fine des produits de réactions. Cependant, dans la plupart des cas, ces observations expérimentales ne fournissent pas tous les détails qui nous permettent de décrire finement les mécanismes gouvernant les processus élémentaires étudiés. Par conséquent, l'élaboration de modèles théoriques devient essentielle pour en rationaliser la description. L'objectif principal de ce travail de thèse est de proposer une analyse de la dynamique de plusieurs processus élémentaires pouvant se produire sur une surface de W(100) en contact avec de l'hydrogène et de l'azote (diffusion inélastique de N2 et H2, l'adsorption dissociative et non dissociative de H2 et l'adsorption et l'absorption de H et N). Par rapport aux études antérieures, la nouveauté de ce travail réside dans la prise en compte des interactions à longue distance de type van der Waals, qui s’avèrent essentielles lorsqu'on souhaite atteindre un bon accord théorie expérience dans le régime des faibles énergies de collision. Les résultats sont comparés aux données expérimentales disponibles et aux résultats théoriques antérieurs. Des simulations de dynamique moléculaire quasi-classique sont réalisés à l'aide de surfaces d'énergie potentielle (PES) basées sur la théorie de la fonctionnelle de la densité, tenant compte d’interactions non locales, telles que les forces de van der Waals. La dissipation de l’énergie aux vibrations du réseau et aux excitations électroniques est prise en compte au moyen de modèles effectifs. / An important part of scientific literature is devoted to the heterogeneous elementary processes occurring at gas-solid interface due to their great importance and key role in many different domains and applications. Thus, interaction of gas atoms/molecules with surface reactions are of primary importance in the study of: heterogeneous catalysis, combustion of solid fuel and coal gasification, processes of corrosion, hydrogen storage in solid material, automotive and oil industry, plasma-wall interactions in the context of thermonuclear experimental reactor (ITER), atmospheric re-entries technologies and astrochemistry, to name some examples. When an atom or molecule impinges on a surface many different elementary processes can take place, which depends on factors such as: the collision energy of the projectile, the angle of incidence to the surface, the surface temperature, the initial state of the molecules, the transference of energy projectiles-surface, etc. All these factors determines the mechanisms of reaction and the dynamics of the processes. Experimental molecular beams (MB) and other experimental techniques are able to accurately control the initial state of the reactive and characterizing products of gas-surface reactions. However, in most of the case experimental techniques do not provide enough details about the mechanisms through which elementary processes occur. Consequently, theoretical models becomes essential to rationalize the description that in certain cases the experiments do not reach.The main goal of this thesis work is to propose an analyze of the dynamics of several elementary processes occurring on a W(100) surface, such as: the inelastic scattering of N2 and H2, the dissociative and non-dissociative adsorption of of H2 and the adsorption and absorption of H and N. Compared to previous studies, the novelty of this work resides in the taking into account of van der Waals long-distance interactions, which are essential to reach a good agreement between theoretical and experiment results, especially at low collision energy regime. To rationalize the non-adiabatic effects, the energy dissipation to lattice vibrations and electronic excitation are taken in to account by means of GLO and LDFA models respectively.
8

Dynamique de relaxation électronique d’un atome métallique déposé sur agrégat d’argon / Electronic relaxation dynamics of a metal atom deposited on argon cluster

Awali, Slim 15 March 2014 (has links)
Ce travail de thèse est une recherche sur l'interaction entre des états atomiques excités électroniquement et un environnement non réactif. Nous avons étudié théoriquement et expérimentalement des situations où un atome métallique (K et Ba) est placé dans un environnement de taille finie (agrégat d’argon). La présence de l'environnement affecte les niveaux électroniques de l'atome. En retour, l'excitation de l'atome induit une dynamique de relaxation de l'énergie électronique via les déformations du système atome-agrégat. La partie expérimentale du travail porte sur les deux aspects : spectroscopie et dynamique. Dans les deux cas un premier laser porte l'atome métallique dans un état électronique excité et un second l'ionise. L'observable est le spectre de photoélectrons enregistré après photo ionisation éventuellement complétée par des informations sur les photo-ions qui sont également produits. Cette technique à deux lasers conduit à des mesures de dynamique selon la technique pompe-sonde quand les lasers utilisés sont à impulsion ultracourte (60 fs). L'utilisation de lasers nanosecondes, conduit à des mesures de résonance non résolues temporellement qui donnent des informations spectroscopiques sur la position des niveaux d'énergie du système étudié. D’un point de vue théorique, les états excités du système M-Ar_n ont été calculés ab-initio en utilisant des pseudo-potentiels à grand cœur pour limiter les électrons actifs aux seuls électrons de valence du métal. L’étude d’un métal alcalin (potassium) rend cette méthode particulièrement attractive car un seul électron est actif. Le calcul ab-initio et une simulation Monte-Carlo ont été couplés pour optimiser la géométrie d'agrégats KAr_n (n=1-10) quand K est dans l'état fondamental, excité dans les états 4p ou 5s ou ionisé vers l'état fondamental de l'ion. Des calculs ont également été conduits en collaboration avec B. Gervais (CIMAP, Caen) sur des agrégats KAr_n comportant plusieurs dizaines d'atomes Ar. Des spectres d'absorption ont également été calculés. D’un point de vue expérimental, nous avons pu caractériser les niveaux électroniques excités du potassium et du baryum perturbés par l’agrégat. Dans les deux cas une bande ∏, liante, et une bande ∑, anti-liante, ont été observées. Dans le cas du potassium, nous avons montré que l’excitation dans la bande ∑ conduisait à une éjection de l’agrégat en 1-2 ps alors que pour le baryum, l’état électronique relaxe majoritairement sur l’état ∏ en ≈ 6 ps et ne conduit pas à une éjection. L’interprétation fait appel aux structures et aux potentiels calculés. Une étude équivalente a été conduite sur la molécule de DABCO déposée sur agrégat. Au contraire de K et Ba, le premier état excité de cette molécule a un fort caractère isotrope et diffus, ce qui confère un caractère particulier à la dynamique photoinduite. / This thesis is a study on the interaction between electronically excited atomic states and a non-reactive environment. We have theoretically and experimentally studied situations where a metal atom (Ba or K) is placed in a finite size environment (argon cluster). The presence of the medium affects the electronic levels of the atom. On the other side, the excitation of the atom induces a relaxation dynamics of the electronic energy through the deformation of the cluster. The experimental part of this work focuses on two aspects : the spectroscopy and the dynamics. In both cases a first laser electronically excites the metal atom and the second ionizes the excited system. The observable is the photoelectron spectrum recorded after photoionization and possibly information on the photoion which are also produced. This pump/probe technique, with also two lasers, provide the ultrafast dynamic when the lasers pulses used are of ultrashort (60 fs ). The use of nanosecond lasers leads to resonance spectroscopic measurement, unresolved temporally, which give information on the position of the energy levels of the studied system. From a theoretical point-of-view, the excited states of M-Ar_n were calculated at the ab initio level, using large core pseudo-potential to limit the active electrons of the metal to valence electrons. The study of alkali metals (potassium) is especially well adapted to this method since only one electron is active. The ab-initio calculation and a Monte-Carlo simulation where coupled to optimize the geometry of the KAr_n (n = 1-10) cluster when K is in the ground state of the neutral and the ion, or excited in the 4p or 5s state. Calculations were also conducted in collaboration with B. Gervais (CIMAP, Caen) on KAr_n clusters having several tens of argon atoms. Absorption spectra were also calculated. From an experimental point-of-view, we were able to characterize the excited states of potassium and barium perturbed by the clusters. In both cases a binding ∏-state, and an anti-binding ∑ -state were observed. In the case of potassium, we observered that the excitation on the ∑ -state leads to the ejection of the metal within 1-2 ps while for barium, the excited state relaxes mainly on the ∏-state within 6 ps and does not followed by an ejection. The interpretation of these results uses the structures and potential calculated. A similar study was conducted on the DABCO molecule deposited argon cluster. Instead of K and Ba, the first excited state of this molecule is a diffuse isotropic state, which gives a specific relaxation to the photoinduced dynamics.
9

Spectroscopie et dynamique de réactions chimiques préparées dans des complexes de van der Waals

Soorkia, Satchin 12 September 2008 (has links) (PDF)
Les métaux de transitions possèdent des électrons \emph{d} de valence d'où une grande richesse de configurations électroniques à l'origine de leur réactivité spécifique. Les éléments de la deuxième rangée présentent en particulier des orbitales atomiques \emph{4d} et \emph{5s} de taille et d'énergie voisines, leur permettant d'être impliquées toutes deux dans des processus réactifs. Nous nous sommes intéressés à la réactivité d'un de ces éléments, le zirconium, associé à une simple molécule organique fonctionnalisée dans un complexe de vdW formé en jet moléculaire supersonique dans le cas modèle de la réaction $\ce {Zr}$~+~$\ce {CH3F}$.<br /><br />Dans ces complexes, l'une des réactions qui nous intéresse conduit à la formation de $\ce {ZrF}$. La spectroscopie électronique de $\ce {ZrF}$ dans ses bandes principales entre 400~-~470~nm est extrêmement riche et surprenante pour une molécule diatomique. Cette étude a permis d'identifier l'état fondamental de $\ce {ZrF}$ ($\rm X^2\Delta$) à travers la simulation des structures rotationnelles des bandes observées et d'obtenir des informations essentielles sur sa structure électronique. Ces résultats expérimentaux sont en accord avec les calculs \emph{ab initio}.<br /><br />Les états excités du complexe $\ce {Zr\bond{...}F\bond{-}CH3}$ ont été étudiés avec une méthode de dépopulation. Le domaine spectral 615~-~700~nm est particulièrement intéressant car il révèle un groupe diffus de bandes déplacées vers les plus faibles longueurs d'onde et élargies par rapport à la transition $\rm z^3F$~$\leftarrow$~$\rm a^3F$ dans le métal. Cette transition est interdite à partir de l'état fondamental $\rm a^3F_2$ du zirconium mais permise à partir de l'état $\rm a^3F_4$. La complexation par $\ce {CH3F}$ permet un couplage entre ces deux composantes et assure la ransition optique depuis l'état fondamental du complexe.
10

Dynamique de relaxation électronique d'un atome métallique déposé sur agrégat d'argon

Awali, Slim 15 March 2014 (has links) (PDF)
Ce travail de thèse est une recherche sur l'interaction entre des états atomiques excités électroniquement et un environnement non réactif. Nous avons étudié théoriquement et expérimentalement des situations où un atome métallique (K et Ba) est placé dans un environnement de taille finie (agrégat d'argon). La présence de l'environnement affecte les niveaux électroniques de l'atome. En retour, l'excitation de l'atome induit une dynamique de relaxation de l'énergie électronique via les déformations du système atome-agrégat. La partie expérimentale du travail porte sur les deux aspects : spectroscopie et dynamique. Dans les deux cas un premier laser porte l'atome métallique dans un état électronique excité et un second l'ionise. L'observable est le spectre de photoélectrons enregistré après photo ionisation éventuellement complétée par des informations sur les photo-ions qui sont également produits. Cette technique à deux lasers conduit à des mesures de dynamique selon la technique pompe-sonde quand les lasers utilisés sont à impulsion ultracourte (60 fs). L'utilisation de lasers nanosecondes, conduit à des mesures de résonance non résolues temporellement qui donnent des informations spectroscopiques sur la position des niveaux d'énergie du système étudié. D'un point de vue théorique, les états excités du système M-Ar_n ont été calculés ab-initio en utilisant des pseudo-potentiels à grand cœur pour limiter les électrons actifs aux seuls électrons de valence du métal. L'étude d'un métal alcalin (potassium) rend cette méthode particulièrement attractive car un seul électron est actif. Le calcul ab-initio et une simulation Monte-Carlo ont été couplés pour optimiser la géométrie d'agrégats KAr_n (n=1-10) quand K est dans l'état fondamental, excité dans les états 4p ou 5s ou ionisé vers l'état fondamental de l'ion. Des calculs ont également été conduits en collaboration avec B. Gervais (CIMAP, Caen) sur des agrégats KAr_n comportant plusieurs dizaines d'atomes Ar. Des spectres d'absorption ont également été calculés. D'un point de vue expérimental, nous avons pu caractériser les niveaux électroniques excités du potassium et du baryum perturbés par l'agrégat. Dans les deux cas une bande ∏, liante, et une bande ∑, anti-liante, ont été observées. Dans le cas du potassium, nous avons montré que l'excitation dans la bande ∑ conduisait à une éjection de l'agrégat en 1-2 ps alors que pour le baryum, l'état électronique relaxe majoritairement sur l'état ∏ en ≈ 6 ps et ne conduit pas à une éjection. L'interprétation fait appel aux structures et aux potentiels calculés. Une étude équivalente a été conduite sur la molécule de DABCO déposée sur agrégat. Au contraire de K et Ba, le premier état excité de cette molécule a un fort caractère isotrope et diffus, ce qui confère un caractère particulier à la dynamique photoinduite.

Page generated in 0.129 seconds