• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 14
  • 14
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Développement de méthodes itératives pour la reconstruction en tomographie spectrale / Iterative methods for spectral computed tomography reconstruction

Tairi, Souhil 20 June 2019 (has links)
Depuis quelques années les détecteurs à pixels hybrides ont ouvert la voie au développement de la tomographie à rayon X spectrale ou tomodensitométrie (TDM) spectrale. La TDM spectrale permet d’extraire plus d’information concernant la structure interne de l’objet par rapport à la TDM d’absorption classique. Un de ses objectifs dans l’imagerie médicale est d’identifier et quantifier des composants d’intérêt dans un objet, tels que des marqueurs biologique appelés agents de contraste (iode, baryum, etc.). La majeure partie de l’état de l’art procède en deux étapes : - la "pré-reconstruction" qui consiste à séparer les composants dans l’espace des projections puis reconstruire, - la "post-reconstruction", qui reconstruit l’objet puis sépare les composants.On s’intéresse dans ce travail de thèse à une approche qui consiste à séparer et reconstruire simultanément les composants de l’objet. L’état de l’art des méthodes de reconstruction et séparation simultanées de données de TDM spectrale reste à ce jour peu fourni et les approches de reconstruction existantes sont limitées dans leurs performances et ne tiennent souvent pas compte de la complexité du modèle d’acquisition.L’objectif principal de ce travail de thèse est de proposer des approches de reconstruction et séparation tenant compte de la complexité du modèle afin d’améliorer la qualité des images reconstruites. Le problème à résoudre est un problème inverse, mal-posé, non-convexe et de très grande dimension. Pour le résoudre, nous proposons un algorithme proximal à métrique variable. Des résultats prometteurs sont obtenus sur des données réelles et montrent des avantages en terme de qualité de reconstruction. / In recent years, hybrid pixel detectors have paved the way for the development of spectral X ray tomography or spectral tomography (CT). Spectral CT provides more information about the internal structure of the object compared to conventional absorption CT. One of its objectives in medical imaging is to obtain images of components of interest in an object, such as biological markers called contrast agents (iodine, barium, etc.).The state of the art of simultaneous reconstruction and separation of spectral CT data methods remains to this day limited. Existing reconstruction approaches are limited in their performance and often do not take into account the complexity of the acquisition model.The main objective of this thesis work is to propose better quality reconstruction approaches that take into account the complexity of the model in order to improve the quality of the reconstructed images. Our contribution considers the non-linear polychromatic model of the X-ray beam and combines it with an earlier model on the components of the object to be reconstructed. The problem thus obtained is an inverse, non-convex and misplaced problem of very large dimensions.To solve it, we propose a proximal algorithmwith variable metrics. Promising results are shown on real data. They show that the proposed approach allows good separation and reconstruction despite the presence of noise (Gaussian or Poisson). Compared to existing approaches, the proposed approach has advantages over the speed of convergence.
12

Assessment of a prediction-based strategy for mixingautonomous and manually driven vehicles in an intersection / Utvärdering av en prediktionsbaserad metod för att blanda autonoma och manuella bilar i en korsning

NADI, ADRIAN, STEFFNER, YLVA January 2017 (has links)
The introduction of autonomous vehicles in traffic is driven by expected gains in multiple areas, such as improvement of health and safety, better resource utilization, pollution reduction and greater convenience. The development of more competent algorithms will determine the rate and level of success for the ambitions around autonomous vehicles. In this thesis work an intersection management system for a mix of autonomous and manually driven vehicles is created. The purpose is to investigate the strategy to combine turn intention prediction for manually driven vehicles with scheduling of autonomous vehicle. The prediction method used is support vector machine (SVM) and scheduling of vehicles have been made by dividing the intersection into an occupancy grid and apply different safety levels. Real-life data comprising recordings of large volumes of traffic through an intersection has been combined with simulated vehicles to assess the relevance of the new algorithms. Measurements of collision rate and traffic flow showed that the algorithms behaved as expected. A miniature vehicle based on a prototype for an autonomous RC-car has been designed with the purpose of testing of the algorithms in a laboratory setting. / Införandet av autonoma fordon i trafiken drivs av förväntade vinster i flera områden, såsom förbättring av hälsa och säkerhet, bättre resursutnyttjande, minskning av föroreningar och ökad bekvämlighet. Utvecklingen av mer kompetenta algoritmer kommer att bestämma hastigheten och nivån på framgång för ambitionerna kring autonoma fordon. I detta examensarbete skapas ett korsningshanteringssystem för en blandning av autonoma och självkörande bilar. Syftet är att undersöka strategin att kombinera prediktion av hur manuellt styrda bilar kommer att svänga med att schemalägga autonoma bilar utifrån detta. Prediktionsmetoden som använts är support vector machine (SVM) och schemaläggning av bilar har gjorts genom att dela upp korsningen i ett occupancy grid och tillämpa olika säkerhetsmarginaler. Verklig data från inspelningar av stora volymer trafik genom en korsning har kombinerats med simulerade fordon för att bedöma relevansen av de nya algoritmerna. Mätningar av kollisioner och trafikflöde visade att algoritmerna uppträdde som förväntat. Ett miniatyrfordon baserat på en prototyp av en självkörande radiostyrd bil har tagits fram i syfte att testa algoritmerna i laboratoriemiljö.
13

Quantifying Trust in Wearable Medical Devices

Thomas, Mini January 2024 (has links)
This thesis explores a methodology to quantify trust in wearable medical devices (WMD) by addressing two main challenges: identifying key factors influencing trust and developing a formal framework for precise trust quantification under uncertainty. The work empirically validates trust factors and uses a Bayesian network to quantify trust. The thesis further employs a data-driven approach to estimate Bayesian parameters, facilitating query-based inference and validating the trust model with real and synthetic datasets, culminating in a customizable parameterized trust evaluation prototype for WMD. / Advances in sensor and digital communication technologies have revolutionized the capabilities of wearable medical device (WMD) to monitor patients’ health remotely, raising growing concerns about trust in these devices. There is a need to quantify trust in WMD for their continued acceptance and adoption by different users. Quantifying trust in WMD poses two significant challenges due to their subjective and stochastic nature. The first challenge is identifying the factors that influence trust in WMD, and the second is developing a formal framework for precise quantification of trust while taking into account the uncertainty and variability of trust factors. This thesis proposes a methodology to quantify trust in WMD, addressing these challenges. In this thesis, first, we devise a method to empirically validate dominant factors that influence the trustworthiness of WMD from the perspective of device users. We identified the users’ awareness of trust factors reported in the literature and additional user concerns influencing their trust. These factors are stepping stones for defining the specifications and quantification of trust in WMD. Second, we develop a probabilistic graph using Bayesian network to quantify trust in WMD. Using the Bayesian network, the stochastic nature of trust is viewed in terms of probabilities as subjective degrees of belief by a set of random variables in the domain. We define each random variable in the network by the trust factors that are identified from the literature and validated by our empirical study. We construct the trust structure as an acyclic-directed graph to represent the relationship between the variables compactly and transparently. We set the inter-node relationships, using the goal refinement technique, by refining a high-level goal of trustworthiness to lower-level goals that can be objectively implemented as measurable factors. Third, to learn and estimate the parameters of the Bayesian network, we need access to the probabilities of all nodes, as assuming a uniform Gaussian distribution or using values based on expert opinions may not fully represent the complexities of the factors influencing trust. We propose a data-driven approach to generate priors and estimate Bayesian parameters, in which we use data collected from WMD for all the measurable factors (nodes) to generate priors. We use non-functional requirement engineering techniques to quantify the impacts between the node relationships in the Bayesian network. We design propagation rules to aggregate the quantified relationships within the nodes of the network. This approach facilitates the computation of conditional probability distributions and enables query-based inference on any node, including the high-level trust node, based on the given evidence. The results of this thesis are evaluated through several experimental validations. The factors influencing trust in WMD are empirically validated by an extensive survey of 187 potential users. The learnability, and generalizability of the proposed trust network are validated with a real dataset collected from three users of WMD in two conditions, performing predefined activities and performing regular daily activities. To extend the variability of conditions, we generated an extensive and representative synthetic dataset and validated the trust network accordingly. Finally, to test the practicality of our approach, we implemented a user-configurable, parameterized prototype that allows users of WMD to construct a customizable trust network and effectively compare the trustworthiness of different devices. The prototype enables the healthcare industry to adapt and adopt this method to evaluate the trustworthiness of WMD for their own specific use cases. / Thesis / Doctor of Philosophy (PhD) / In this thesis, two challenges in quantifying trust in wearable medical devices, are addressed. The first challenge is the identification of factors influencing trust which are inherently subjective and vary widely among users. To address this challenge, we conducted an extensive survey to identify and validate the trust factors. These factors are stepping stones for defining the specifications and quantifying trust in wearable medical devices. The second challenge is to develop a precise method for quantification of trust while taking into account the uncertainty and variability of trust factors. We constructed a Bayesian network, that captures the complexities of trust as probabilities of the trust factors (identified from the survey) and developed a data-driven approach to estimate the parameters of the Bayesian network to compute the measure of trust. The findings of this thesis are empirically and experimentally validated across multiple use cases, incorporating real and synthetic data, various testing conditions, and diverse Bayesian network configurations. Additionally, we developed a customizable, parameterized prototype that empowers users and healthcare providers to effectively assess and compare the trustworthiness of different wearable medical devices.
14

Algoritmo para a extração incremental de sequências relevantes com janelamento e pós-processamento aplicado a dados hidrográficos

Silveira Junior, Carlos Roberto 07 June 2013 (has links)
Made available in DSpace on 2016-06-02T19:06:09Z (GMT). No. of bitstreams: 1 5554.pdf: 2294386 bytes, checksum: ce6dc6cd7128337c0533ddd23c0bc601 (MD5) Previous issue date: 2013-06-07 / The mining of sequential patterns in data from environmental sensors is a challenging task: the data may show noise and may also contain sparse patterns that are difficult to detect. The knowledge extracted from environmental sensor data can be used to determine climate change, for example. However, there is a lack of methods that can handle this type of database. In order to reduce this gap, the algorithm Incremental Miner of Stretchy Time Sequences with Post-Processing (IncMSTS-PP) was proposed. The IncMSTS-PP applies incremental extraction of sequential patterns with post-processing based on ontology for the generalization of the patterns. The post-processing makes the patterns semantically richer. Generalized patterns synthesize the information and makes it easier to be interpreted. IncMSTS-PP implements the Stretchy Time Window (STW) that allows stretchy time patterns (patterns with temporal intervals) are mined from bases that have noises. In comparison with GSP algorithm, IncMSTS-PP can return 2.3 times more patterns and patterns with 5 times more itemsets. The post-processing module is responsible for the reduction in 22.47% of the number of patterns presented to the user, but the returned patterns are semantically richer. Thus, the IncMSTS-PP showed good performance and mined relevant patterns showing, that way, that IncMSTS-PP is effective, efficient and appropriate for domain of environmental sensor data. / A mineração de padrões sequenciais em dados de sensores ambientais é uma tarefa desafiadora: os dados podem apresentar ruídos e podem, também, conter padrões esparsos que são difíceis de serem detectados. O conhecimento extraído de dados de sensores ambientais pode ser usado para determinar mudanças climáticas, por exemplo. Entretanto, há uma lacuna de métodos que podem lidar com este tipo de banco de dados. Com o intuito de diminuir esta lacuna, o algoritmo Incremental Miner of Stretchy Time Sequences with Post- Processing (IncMSTS-PP) foi proposto. O IncMSTS-PP aplica a extração incremental de padrões sequencias com pós-processamento baseado em ontologia para a generalização dos padrões obtidos que acarreta o enriquecimento semântico desses padrões. Padrões generalizados sintetizam a informação e a torna mais fácil de ser interpretada. IncMSTS-PP implementa o método Stretchy Time Window (STW) que permite que padrões de tempo elástico (padrões com intervalos temporais) sejam extraídos em bases que apresentam ruídos. Em comparação com o algoritmo GSP, o IncMSTS-PP pode retornar 2,3 vezes mais sequencias e sequencias com 5 vezes mais itemsets. O módulo de pós-processamento é responsável pela redução em 22,47% do número de padrões apresentados ao usuário, porém os padrões retornados são semanticamente mais ricos, se comparados aos padrões não generalizados. Assim sendo, o IncMSTS-PP apresentou bons resultados de desempenho e minerou padrões relevantes mostrando, assim, que IncMSTS-PP é eficaz, eficiente e apropriado em domínio de dados de sensores ambientais.

Page generated in 0.0786 seconds