Spelling suggestions: "subject:"reconhecimento dde padrões"" "subject:"reconhecimento dde ladrões""
391 |
Open-set optimum-path forest classifier = Classificador optimum-path forest para cenário aberto / Classificador optimum-path forest para cenário abertoMendes Júnior, Pedro Ribeiro, 1990- 25 August 2018 (has links)
Orientadores: Anderson de Rezende Rocha, Ricardo da Silva Torres / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-25T19:52:29Z (GMT). No. of bitstreams: 1
MendesJunior_PedroRibeiro_M.pdf: 10648148 bytes, checksum: 314a33c9bb6fb8a188bfa762899107e8 (MD5)
Previous issue date: 2014 / Resumo: Em reconhecimento de padrões, um cenário aberto é aquele em que não há amostras de treinamento para algumas classes que podem aparecer durante o teste. Normalmente, muitas aplicações são inerentemente de cenário aberto. Consequentemente, as soluções bem sucedidas da literatura para cenário fechado nem sempre são adequadas para problemas de reconhecimento na prática. Nesse trabalho, propomos um novo classificador multiclasse para cenário aberto, que estende o classificador Optimum-Path Forest (OPF). O OPF é um classificador de padrões baseado em grafos, simples, independente de parâmetros, multiclasse e desenvolvido para para problemas de cenário fechado. O método que propomos, o Open-Set OPF (OSOPF), incorpora a capacidade de reconhecer as amostras pertencentes às classes que são desconhecidas no tempo de treinamento, sendo adequado para reconhecimento em cenário aberto. Além disso, propomos novas medidas para avaliação de classificadores propostos para problemas em cenário aberto. Nos experimentos, consideramos seis grandes bases de dados com diferentes cenários de reconhecimento e demonstramos que o OSOPF proposto supera significativamente as abordagens existentes na literatura / Abstract: An open-set recognition scenario is the one in which there are no a priori training samples for some classes that might appear during testing. Usually, many applications are inherently open set. Consequently, the successful closed-set solutions in the literature are not always suitable for real-world recognition problems. Here, we propose a novel multiclass open-set classifier that extends upon the Optimum-Path Forest (OPF) classifier. OPF is a graph-based, simple, parameter independent, multiclass, and widely used classifier for closed-set problems. Our proposed Open-Set OPF (OSOPF) method incorporates the ability to recognize samples belonging to classes that are unknown at training time, being suitable for open-set recognition. In addition, we propose new evaluation measures for assessing the effectiveness performance of classifiers in open-set problems. In experiments, we consider six large datasets with different open-set recognition scenarios and demonstrate that the proposed OSOPF significantly outperforms its counterparts of the literature / Mestrado / Ciência da Computação / Mestre em Ciência da Computação
|
392 |
Classificação de séries temporais de dados MODIS baseada em redes neuro-fuzzy para o monitoramento sistemático do cultivo da cana-de-açúcar / Classification of time-series MODIS data based neuro-fuzzy networks for the systematic monitoring of sugarcane cultivationAntunes, João Francisco Gonçalves, 1965- 25 August 2018 (has links)
Orientadores: Rubens Augusto Camargo Lamparelli, Luiz Henrique Antunes Rodrigues / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola / Made available in DSpace on 2018-08-25T22:49:02Z (GMT). No. of bitstreams: 1
Antunes_JoaoFranciscoGoncalves_D.pdf: 43454007 bytes, checksum: 67ed252d3dc3cb63f6c8b6e62263af20 (MD5)
Previous issue date: 2014 / Resumo: O setor agrícola brasileiro está sendo marcado por um novo ciclo de expansão do cultivo da cana-de-açúcar. O Brasil é hoje o maior produtor de cana-de-açúcar do mundo, sendo o Estado de São Paulo o maior produtor nacional, com grandes áreas de plantio. Nesse sentido, a estimativa confiável de área plantada da cana-de-açúcar é de fundamental importância para o agronegócio sucroalcooleiro. As geotecnologias têm sido empregadas nas estimativas de safras agrícolas para diminuir o nível de subjetividade dos métodos tradicionais. As imagens do sensor MODIS fornecem uma ampla cobertura da superfície da Terra com alta periodicidade, que possibilitam o monitoramento agrícola sistemático. Entretanto, a sua moderada resolução espacial faz com que possa ocorrer a mistura espectral de diferentes classes de cobertura do solo dentro de um mesmo pixel, acarretando problemas de acurácia na obtenção de estimativas de área. Nesse contexto, o objetivo principal do trabalho foi desenvolver uma metodologia de classificação automática baseada em redes neuro-fuzzy utilizando séries temporais de índices de vegetação MODIS, para estimar a área plantada de cana-de-açúcar no nível sub-pixel. Considerando as safras 2004/2005 a 2011/2012 analisadas no Estado de São Paulo, os mapeamentos gerados pelo modelo de classificação Fuzzy ARTMAP obtiveram uma alta exatidão e baixa discordância, aliado a uma forte correlação linear com as proporções de cana-de-açúcar de referência. Com isso, foi possível obter a estimativa de área plantada no final de março, com antecedência em relação à colheita, ao contrário dos levantamentos oficiais que se estendem até o final da safra, além de utilizarem dados subjetivos. As estimativas de área plantada de cana-de-açúcar baseadas nas Medidas de Compromisso do classificador Fuzzy ARTMAP mostraram-se fortemente correlacionadas e em concordância com as estimativas de área de referência do Canasat, também bem balizadas com as estimativas oficiais do IBGE, em nível municipal, sendo um indicativo de boa precisão. O nível dos desvios entre as estimativas de área mostrou uma variação média municipal menor em relação aos dados do Canasat do que os dados do IBGE. O desempenho do classificador Fuzzy ARTMAP está intrinsecamente relacionado à caracterização da distribuição geográfica do cultivo da cana-de-açúcar nas mesorregiões do Estado de São Paulo, alcançando melhores ajustes onde o cultivo é mais expressivo. Na consolidação para o nível de mesorregiões, os ajustes alcançaram um desempenho ainda superior, indicado por valores extremamente altos de correlação e concordância. Na comparação da área plantada com os dados do Zoneamento Agroecológico da cana-de-açúcar ao longo das oito safras, observou-se que a expansão do cultivo da cana-de-açúcar predomina essencialmente em regiões aptas, com a tendência recente de incorporar mais áreas para produção agrícola do que pastagens. A metodologia de estimativa de área plantada baseada nas Medidas de Compromisso do classificador Fuzzy ARTMAP foi eficiente para o mapeamento da cana-de-açúcar, demostrando grande potencial para a análise sub-pixel de séries temporais de índices de vegetação MODIS / Abstract: The Brazilian agricultural sector has been marked by a new cycle of expansion of sugarcane cultivation. Currently, Brazil is the largest sugarcane producer and the São Paulo State is the largest national producer, with an extensive cropping area. In this sense, a reliable estimation of sugarcane crop area is essential for the sugar-ethanol agribusiness. Geotechnologies have been employed on agricultural crop estimates to reduce the level of subjectivity of the traditional methodologies. MODIS sensor images provide a wide coverage of the Earth¿s surface with high periodicity, supporting the systematic agricultural monitoring. However, its moderate spatial resolution leads to the spectral mixture of different land cover classes within the same pixel, causing accuracy problems on crop area estimation. In this context, the main objective of the study was to develop an automatic classification methodology based on neuro-fuzzy networks using MODIS vegetation indices time-series to estimate the sugarcane crop areas at sub-pixel level. Considering the analyzed cropping years in the São Paulo State, from 2004/2005 to 2011/2012, the maps generated by the Fuzzy ARTMAP classification model showed high accuracy and low disagreement, in addition to a strong linear correlation with the proportions of the sugarcane reference. Then, it was possible to obtain the crop area estimation at the end of March, prior to the harvest period, unlike the official surveys, which extend until the end of the harvest and use subjective data. The sugarcane crop area estimation based on the Commitment Measures from the Fuzzy ARTMAP classifier showed to be strongly correlated and in agreement with the reference area estimation of Canasat, also well marked out with the official estimation from IBGE, at municipal level, being an indicative of good accuracy. The deviation level between the estimations showed a lower municipal average variation in relation to Canasat data than IBGE data. The performance of the Fuzzy ARTMAP classifier is intrinsically related to the characterization of geographical distribution of the sugarcane cultivation in the mesoregions of the São Paulo State, reaching best adjustments where the cultivation is more expressive. In the data consolidation at the mesoregion level, the adjustments achieved even greater performance, demonstrated by extremely high values of correlation and agreement. Comparing the crop area estimation with the Sugarcane Agroecological Zoning in the eight crop seasons, it was observed that this cultivation predominates mostly in suitable regions, with the recent trend of incorporating more areas for agricultural production than pastures. The methodology for crop area estimation, based on the Commitment Measures of the Fuzzy ARTMAP classifier, was efficient for sugarcane crop area mapping, showing great potential for the sub-pixel analysis of MODIS time-series of vegetation indices / Doutorado / Planejamento e Desenvolvimento Rural Sustentável / Doutor em Engenharia Agrícola
|
393 |
Modelos baseados em data mining para classificação multitemporal de culturas no Mato Grosso utilizando dados de NDVI/MODIS / Models based on data mining for classification multitemporal crop in Mato Grosso data using NDVI/MODISLopes, Kelly Marques de Oliveira, 1982- 08 September 2013 (has links)
Orientadores: Laércio Luis Vendite, Stanley Robson de Medeiros Oliveira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-23T13:40:19Z (GMT). No. of bitstreams: 1
Lopes_KellyMarquesdeOliveira_M.pdf: 10053877 bytes, checksum: 2126c76ce80f71b89ec947645274c384 (MD5)
Previous issue date: 2013 / Resumo: O desenvolvimento de estudos na área de geotecnologia e o aumento na capacidade de armazenar dados têm melhorado a exploração e os estudos de imagens de satélites obtidas através de sensores orbitais. O mapeamento da cobertura da terra, estimativas de produtividade de culturas e a previsão de safras são informações importantes para o agricultor e para o governo, pois essas informações são essenciais para subsidiar decisões relacionadas à produção, estimativas de compra e venda, e cálculos de importação e exportação. Uma das alternativas para analisar dados de uso e cobertura da terra, obtidos por meio de sensores, é o uso de técnicas de mineração de dados, uma vez que essas técnicas podem ser utilizadas para transformar dados e informações em conhecimentos que irão subsidiar decisões relativas ao planejamento agrícola. Neste trabalho, foram utilizados dados multitemporais sobre o índice de vegetação NDVI, derivados de imagens do sensor MODIS, para o monitoramento das culturas de algodão, soja e milho no estado do Mato Grosso, no período do ano-safra de 2008/2009. O conjunto de dados, fornecido pela Embrapa Informática Agropecuária, foi composto por 24 colunas e 728 linhas, onde as 23 primeiras colunas referem-se aos valores do NVDI, e a última, à cobertura do solo. A metodologia utilizada teve como base o modelo CRISP-DM (Cross Industry Standard Process for Data Mining). Modelos preditivos para classificar dados sobre essas culturas foram elaborados e avaliados por algoritmos de aprendizado de máquina, tais como árvores de decisão (J48 e PART), florestas aleatórias (Random Forest). A seleção de atributos melhorou os valores do índice Kappa e a acurácia dos modelos. Foram geradas regras de classificação para mapear as culturas estudadas (soja, milho e algodão). Os resultados revelaram que os algoritmos de aprendizado de máquina são promissores para o problema de classificação de cobertura do solo. Em particular o algoritmo J48, utilizado em conjunto com a seleção de atributos feito por meio de análise de componentes principais, destacou-se em relação ao demais pela simplicidade e pelos valores apresentados. Os resultados também evidenciaram a presença regiões de cultivo do algodão em outras áreas do estado, fora daquelas estudadas / Abstract: The development of studies in the field of geotechnology and increased ability to store data have improved the exploration and study of satellite images obtained by satellite sensors. The mapping of land cover, estimates of crop productivity and crop forecasting is important information for the farmer and for the government, because this information is essential to support decisions related to production, estimates of purchase and sale, import and calculations and export. An alternative use for data analysis and coverage will be obtained by means of sensors, is the use of data mining techniques since these techniques can be used to transform data and information on the knowledge that will support decisions on agricultural planning. In this work, we used data on the multitemporal vegetation index NDVI derived from MODIS images for monitoring crops of cotton, soybean and corn in the state of Mato Grosso, in the period of the crop year 2008/2009. The dataset supplied by Embrapa Agricultural Informatics, comprised 24 columns and 728 rows, where the 23 first columns refer to the values of NVDI, and the last, the soil cover. The methodology used was based on the model CRISP-DM (Cross Industry Standard Process for Data Mining). Predictive models to classify data on these cultures were prepared and analyzed by machine learning algorithms such as decision trees (J48 and PART), Random Forests (Random Forest). The feature selection improved the Kappa index values and accuracy of the models. Classification rules were generated to map the cultures studied (soy, corn and cotton). The results show that the machine learning algorithms are promising for the problem of classification of land cover. In particular, the J48 algorithm, used in conjunction with feature selection done by principal component analysis, stood out against the other by the simplicity and the values presented. The results also revealed the presence of regions of cotton cultivation in other areas of the state, out of those studied / Mestrado / Matematica Aplicada e Computacional / Mestra em Matemática Aplicada e Computacional
|
394 |
Abordagem neuro-genética para recuperação de padrões = caso de estudo : reconhecimento de gestos em ambientes inteligentes / Neural-genetic approach for patterns recall : case of study : gesture recognition in intelligent environmentsMamani, Ana Beatriz Alvarez 19 August 2018 (has links)
Orientador: José Raimundo de Oliveira / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-19T12:19:26Z (GMT). No. of bitstreams: 1
Mamani_AnaBeatrizAlvarez_M.pdf: 4159333 bytes, checksum: 1e7bbac608fe9a8dc553adedc4b721b7 (MD5)
Previous issue date: 2011 / Resumo: Esta tese apresenta uma nova e efetiva abordagem neuro-genética denominada MAAM-GA constituída por um algoritmo genético e uma rede neural associativa morfológica para a solução de problemas de reconhecimento de padrões. Especificamente, uma rede neural associativa morfológica é combinada com um algoritmo genético que é utilizado na construção da rede neural com a finalidade de aumentar a eficiência e robustez no reconhecimento de padrões. Um estudo detalhado do desempenho da abordagem é apresentado, utilizando imagens em níveis de cinza como padrões. Resultados numéricos e visuais da recuperação dos padrões são apresentados e o desempenho alcançado é comparado com outros modelos neurais associativos morfológicos relevantes para padrões de valor real, mostrando a eficiência e a robustez da abordagem proposta na recordação de imagens em níveis de cinza. Esta abordagem faz parte do desenvolvimento dos sistemas inteligentes que impulsionam o avanço de outras áreas. Pensando em uma potencial aplicação, a proposta neuro-genética é utilizada para resolver o problema de reconhecimento de gestos da mão. O reconhecimento de gestos é um caminho natural de interação humano-computador, e considerando a diversidade e a diferença manifestada pelo ser humano, para muitas pessoas que possuem deficiência física e sensorial, os gestos da mão são o meio principal de comunicação. Várias tecnologias têm sido propostas para trazer benefícios às pessoas com limitações de comunicação. Os ambientes inteligentes surgiram com o principal propósito de melhorar a qualidade de vida do ser humano baseados em ferramentas computacionais, facilitando o desenvolvimento de processos e ações de nosso cotidiano. O reconhecimento de gestos da mão é uma função do ambiente inteligente. Assim, para pessoas portadoras de deficiências físicas que limitem a sua comunicação oral, o reconhecimento de gestos em um ambiente inteligente poderá lhes trazer múltiplos benefícios na comunicação, interação e acessibilidade, permitindo a sua integração com o ambiente. Embora preocupados com pessoas portadoras de deficiências físicas, o sistema de reconhecimento de gestos da mão como parte de um ambiente inteligente destina-se, sobretudo a beneficiar todo e qualquer cidadão que dele tenha acesso. Assim, nesta tese é apresentado um estudo de um sistema de reconhecimento de gestos da mão baseado em visão artificial capaz de reconhecer gestos estáticos específicos da mão. Este sistema foi dividido em três módulos, módulo de detecção e segmentação, módulo de extração de características e o módulo de identificação e reconhecimento propriamente dito que utiliza a abordagem neuro-genética proposta. Métodos utilizados no pré-processamento das imagens para segmentação e caracterização também são apresentados. Resultados alcançados com a abordagem proposta são muito incentivadores e sugerem que a proposta possa ser considerada como uma ferramenta eficiente e robusta para recuperação e identificação a ser usada em diversas aplicações relacionadas à interface natural humano-computador. O ótimo desempenho do sistema é um passo para continuar na busca de novas tecnologias para criar um ambiente inteligente que dê suporte às necessidades de pessoas com deficiência visual, auditiva ou motora lhes dando certo nível de autonomia, capacidade de controle do entorno e de comunicação / Abstract: This thesis presents an innovative approach to solving problems of pattern recognition using a neural-genetic combination. Specifically, a morphological associative neural network is combined with a genetic algorithm that is used in the construction of the neural network for increasing the efficiency and robustness of pattern recall. A detailed study about the performance of the approach is presented, using grayscale images as patterns. Numerical and visual results are presented and the performance achieved is compared with other morphological associative neural models showing its effectiveness and robustness in the grayscale images recall. Thinking about a potential application, the proposed approach is used to solve the problem of hand gestures recognition. The hand gestures recognition is a natural way of human-computer interaction and considering the diversity and difference manifested by the human, for many people who have physical and sensory disabilities, the hand gestures is the primary means of communication. Several technologies have been proposed to bring benefits to people with limited communication. The intelligent environments emerged with the main purpose of improving the quality of human life based in computational tools facilitating the development of processes and actions of everyday life. The hand gestures recognition is a function of intelligent environments. So, for people with physical disabilities that limit their oral communication gesture recognition in an intelligent environment can take many benefits in communication, interaction and accessibility allowing its integration with the environment. Although concerned about people with disabilities, the hand gestures recognition system is mainly intended to benefit every people who has access to the environment. Thus, this thesis presents a study of a hand gestures recognition system. The system is able to recognize static hand gestures using the proposed Neural-Genetic Approach. Methods used in the image preprocessing and characterization are also presented. Results achieved with the proposed approach are very encouraging and suggest that the proposal can be considered as an efficient and robust tool for recovery and identification to be used in various applications related to natural human-computer interface. The optimal system performance is a big step to continue the search for new technologies to create an intelligent environment that supports the needs of people with visual, hearing or motor disability / Mestrado / Engenharia de Computação / Doutor em Engenharia Elétrica
|
395 |
Uma abordagem baseada em realimentação de relevância para o problema da desambiguação de nome de autores / A relevance feedback approach for the author name disambiguation problemGodoi, Thiago Anzolin de, 1989- 12 June 2013 (has links)
Orientadores: Ariadne Maria Brito Rizzoni Carvalho, Ricardo da Silva Torres / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-24T12:42:46Z (GMT). No. of bitstreams: 1
Godoi_ThiagoAnzolinde_M.pdf: 1782345 bytes, checksum: d9ede100469835a7820e3cc67caae355 (MD5)
Previous issue date: 2013 / Resumo: Este trabalho apresenta um novo método semiautomático para desambiguação de nomes que explora a utilização de iterações com realimentação de relevância. Uma etapa não supervisionada é utilizada para definir exemplos puros para o treinamento, e uma etapa híbrida supervisionada é empregada para aprender a função de classificação que irá atribuir autores a referências. O modelo combina um classificador por floresta de caminhos ótimos (OPF - Optimum-Path Forest) com uma função de similaridade complexa gerada por um algoritmo de Programação Genética (PG). As principais contribuições deste trabalho são: (i) proposta de um novo método para desambiguação de nomes de autores; (ii) avaliação em uma nova aplicação, da combinação entre os algoritmos OPF e PG, também conhecida como GOPF (Genetic Programming e Optimum-Path Forest), incrementada por uma etapa de realimentação de relevância; (iii) avaliação do algoritmo do GOPF em um problema de classificação multiclasse; e (iv) adaptação do algoritmo do GOPF para lidar com problemas de classificação de conjunto aberto, isto é, que não possuem todas as classes definidas previamente. O método proposto foi validado em duas coleções tradicionais muito utilizadas para avaliação de métodos de desambiguação de nomes de autores. A primeira é a coleção extraída da DBLP e que possui 4.287 referências associadas a 220 autores distintos; a segunda é chamada de KISTI, gerada pelo Korea Institute of Science Technology Information, e que contém os primeiros 1000 autores mais frequentes na versão do banco de dados da DBLP no final de 2007. Após 5 iterações de realimentação do usuário, nossa abordagem atingiu os melhores resultados para a desambiguação de nomes de autores quando comparado com os outros métodos existentes que utilizam somente as informações básicas da referência / Abstract: This work presents a new name disambiguation method that exploits user feedback on ambiguous references across iterations. An unsupervised step is used to define pure training samples, and a hybrid supervised step is employed to learn a classification model for assigning references to authors. Our disambiguation method combines the Optimum-Path Forest (OPF) classifier with complex reference similarity functions generated by a Genetic Programming (GP) framework. The main contributions of this work are: (i) proposal of a novel author name desambiguation method; (ii) evaluation in a new application of the combination between GP and OPF algorithms, also known as GOPF, in interaction learning systems; (iii) evaluation of the GOPF algorithm in a multi-class classification problem; and (iv) extension of the GOPF algorithm to handle open-set classification problems, i.e., classification problems in which class samples are not known in advance. The proposed method was validated with two traditional databases largely used for the evaluation of author name disambiguation methods: one is a collection extracted from DBLP which sums up 4,287 references associated with 220 distinct authors; the other is called KISTI and was built by the Korea Institute of Science and Technology Information; it contains the top 1000 most frequent author names from the late-2007 DBLP database. After 5 iterations of relevance feedback, our approach yielded the best results for author name disambiguation when compared with the state-of-the-art methods that just consider basic reference information, such as author names, publication title, and venue title / Mestrado / Ciência da Computação / Mestre em Ciência da Computação
|
396 |
Uso de técnicas de recuperação de imagens para o problema de reidentificação de pessoas / Content-based image retrieval techniques applied to the person reidentification problemRocca Layza, Vladimir Jaime, 1987- 27 August 2018 (has links)
Orientadores: Ricardo da Silva Torres, Hélio Pedrini / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-27T11:52:06Z (GMT). No. of bitstreams: 1
RoccaLayza_VladimirJaime_M.pdf: 7769260 bytes, checksum: a60ae46083facfc74cd79a4ab0c83c23 (MD5)
Previous issue date: 2015 / Resumo: Vários sistemas de vigilância baseados no uso de múltiplas câmeras têm sido propostos recentemente. No entanto, a identificação de pessoas em sequências de vídeos obtidas por várias câmeras com vistas não sobrepostas, comumente conhecida como reidentificação de pessoas, é um problema em aberto. As razões para que este problema seja considerado desafiador referem-se principalmente às restrições nas quais o problema deve ser resolvido. Estas restrições são definidas a partir das características do cenário e dos objetos de interesse (as pessoas): primeiro, as características biométricas de pessoas não podem ser utilizadas como características discriminantes; segundo, a aparência das pessoas muda drasticamente em virtude de variações na posição, iluminação e parâmetros de câmera. Tais restrições fazem com que uma mesma pessoa possa ser observada por múltiplas câmeras como uma pessoa diferente para cada uma delas. Nesta pesquisa, busca-se investigar alternativas para a criação de sistemas de vigilância visando à reidentificação de pessoas. Foram empregadas técnicas de recuperação de imagens por conteúdo tais como descritores de imagens tradicionais e propostos recentemente, análise multiescala, e técnicas de rank aggregation. Os experimentos realizados consideram a utilização de quatro bases de dados comumente utilizadas na avaliação de sistemas de reidentificação de pessoas. Os resultados obtidos mostraram que as técnicas de recuperação de imagens por conteúdo são promissoras para a reidentificação de pessoas, obtendo resultados comparáveis aos métodos do estado da arte / Abstract: Several surveillance systems based on the use of multiple cameras have been proposed recently. However, the identification of people in video sequences obtained from several cameras with non-overlapping views, commonly known as the person reidentification problem, is still an open problem. Person reidentification is a challenging problem due to the constraints under which the problem should be solved. These constraints come from the characteristics of the scenario and the objects of interest (people): first, biometric features may not be used as discriminant information; second, appearance is dramatically modified by changes in position, lighting conditions, and camera parameters. Therefore, in these conditions a unique person can be ''seen'' as a distinct person by different cameras. This research is focused on the investigation of alternatives for the creation of surveillance systems aiming at person reidentification. We intend to use content-based image retrieval techniques, such as traditional and recently proposed image descriptors, multiscale analysis, and rank aggregation approaches. Conducted experiments considered the use of four different datasets, commonly used in the evaluation of person reidentification systems. Obtained results show that the content-based image retrieval techniques are promising to reidentify people, producing equivalent results to the state-of-the-art methods / Mestrado / Ciência da Computação / Mestre em Ciência da Computação
|
397 |
Identificação de plantas daninhas em cana-de-açúcar por meio de processamento de imagens / Identification of weeds in sugarcane through image processingSantiago, Wesley Esdrar, 1987- 27 August 2018 (has links)
Orientadores: Bárbara Janet Teruel Mederos, Neucimar Jerônimo Leite / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola / Made available in DSpace on 2018-08-27T18:36:30Z (GMT). No. of bitstreams: 1
Santiago_WesleyEsdrar_D.pdf: 3166190 bytes, checksum: 2b92c9e10c657873f3a49bbd80582db3 (MD5)
Previous issue date: 2015 / Resumo: O aumento da produção sem causar danos ao meio ambiente é um dos maiores desafios da agricultura moderna. Na produção de cana-de-açúcar, isso se torna mais nítido quando se trata do manejo de plantas daninhas, uma vez que o uso de herbicidas configura-se como a técnica mais adotada. Plantas daninhas causam interferência na produção agrícola, provocando redução na qualidade do produto e na produtividade da lavoura. Portanto, a identificação da espécie infestante, bem como o nível de infestação torna-se de grande importância para que estratégias adequadas de manejo possam ser definidas. Este trabalho foi realizado visando desenvolver e avaliar o desempenho de um sistema de processamento de imagens RGB, para identificar plantas daninhas na cultura de cana-de-açúcar e estimar a área de solo coberta por elas, uma vez que a existência de uma ferramenta computacional para reconhecimento de espécies de plantas é de grande auxílio para a tomada de decisão acerca do manejo de comunidades infestantes. A abordagem adotada para identificar plantas daninhas e cultura, baseou-se na metodologia do dicionário de palavras. Nesta metodologia, pontos invariantes e característicos de várias imagens são usados para criar um dicionário de características, o dicionário é usado depois para averiguar quais palavras dele estão presentes nas imagens a serem processadas. A quantização do número de palavras do dicionário presentes na imagem foi realizada através de uma função densidade de probabilidade e o modelo matemático de classificação foi construído por meio de máquinas de vetores de suporte. Considerando as seguintes medidas de desempenho: exatidão global e coeficiente de Kappa, o sistema desenvolvido processou 435 imagens RGB, as quais foram obtidas de três cultivos experimentais contendo plantas de cana-de-açúcar, milho e seis espécies de plantas daninhas (Urochloa plantaginea, Urochloa decumbens, Panicum maximum, Euphorbia heterophylla, Ipomoea hederifolia e Ipomoea quamoclit). Os resultados obtidos demonstram que a metodologia possui alto poder para identificar e discriminar plantas daninhas e cultura, alcançando exatidão global e coeficiente Kappa de até 94% e 0,94, respectivamente. Estes resultados suportam a premissa de que um sistema de processamento de imagens é capaz de identificar plantas daninhas na cultura de cana-de-açúcar, estimar o nível de infestação e ainda servir como ferramenta para auxílio à tomada de decisão quanto ao manejo das espécies infestantes / Abstract: The increase in production without causing damage to the environment is one of the biggest challenges of modern agriculture. In the production of sugarcane, this becomes clearer when it comes to the weed management, since the use of herbicides to configure most widely adopted technique. Weeds cause interference in agricultural production, causing reduction in product quality and crop yields. Therefore, the identification of weed species and the level of infestation becomes very important so that appropriate management strategies can be defined. This study sought to develop and evaluate the performance of an image processing system to identify weeds in sugarcane and estimate their level of infestation, since the existence of a computer tool to recognize plants species should give a great support to decision-making about the management of weed communities. The approach taken to identify weeds and crop plants was based on the methodology of bag-of-words. On this methodology, invariant feature points and multiple images are used to create a dictionary of features, the dictionary is then used to ascertain what his words are present the images to be processed, the quantization of the number of words in the dictionary is present in the image made by a probability density function and the mathematical model of rank was made by support vector machine. Considering the performance measures: overall accuracy and Kappa coefficient, the developed system has processed 435 RGB images, what were obtained from three experimental cultives having plants of sugarcane, corn and six weed species (Urochloa plantaginea, Urochloa decumbens, Panicum maximum, Euphorbia heterophylla, Ipomoea hederifolia and Ipomoea quamoclit). The results show that the method has high power to identify and discriminate weed and crop, reaching overall accuracy and Kappa coefficient of up to 94% and 0.94, respectively. These results give support to premise that an image processing system is capable to identify weeds in sugarcane, estimate the infestation level and to be yet a tool for support the decision-making about the management from the weed species / Doutorado / Maquinas Agricolas / Doutor em Engenharia Agrícola
|
398 |
Um sistema híbrido inteligente para previsão de posição de átomos de hidrogênio em proteínas / A hybrid intelligent system for prediction of position of the hydrogen atoms in proteinsAdauto Luiz Mancini 29 April 2008 (has links)
Os métodos existentes para a previsão da posição de átomos de hidrogênio em proteínas são todos baseados na simulação computacional de modelos construídos a partir de características físicas e (ou) químicas das moléculas. A abordagem proposta neste trabalho faz uso de técnicas inteligentes para a predição da posição de átomos de hidrogênio contidos em grupos hidroxilas (OH) pertencentes à cadeias laterais dos aminoácidos serina, treonina e tirosina. Estas técnicas inteligentes são utilizadas em duas fases para a solução do problema proposto: o preprocessamento dos dados e a predição da posição do átomo de hidrogênio. Na fase de preprocessamento, informações sobre os padrões de ligações hidrogênio existentes em moléculas de proteínas são extraídas da base PDB (Protein Data Bank) e reunidas em agrupamentos. A base de dados PDB é a principal base internacional que disponibiliza publicamente a estrutura espacial de biomoléculas, principalmente proteínas e ácidos nucléicos, cujas estruturas espacias foram determinadas através de métodos experimentais. Os padrões de ligações hidrogênio obtidos da base de dados são agrupados por similaridade através de um novo algoritimo proposto, o algoritmo de agrupamento por fusão. Este novo algoritmo de agrupamento foi criado com o propósito de tratar dados com distribuição não uniforme, isolando padrões de entrada muito diferentes da média em agrupamento separados. Após o agrupamento, os padrões de ligações hidrogênio contidos em um grupo têm suas estruturas espaciais superpostas (alinhamento das geometrias dos padrões) através de operações espaciais de translação e rotações, coordenadas pelo uso de um algoritmo genético. Na fase de predição, os padrões já superpostos contidos em cada agrupamento gerado, são utilizados para o treinamento de uma rede neural de arquitetura MLP (multi layer perceptron) para a predição da posição do átomo de hidrogênio contido no padrão. Uma parte dos padrões contidos no agrupamento não são usados para o treinamento da rede e reservados para o teste da capacidade da rede neural inferir a posição do hidrogênio após o treinamento. Para cada agrupamento é treinada uma rede individual, de forma que os parâmetros livres da rede neural sejam calibrados para os dados específicos do agrupamento para o qual a rede neural foi treinada. Após diversas alterações de metodogia ao longo dos experimentos computacionais realizados, a nova abordagem proposta mostrouse eficaz, com um bom índice de acerto na predição da posição do hidrogênio após o treino da rede neural, para padrões de ligações hidrogênio previamente superpostos em agrupamentos / The existing methods for the prediction of the position of hydrogen atoms in proteins are all based on computer simulation models constructed from physical and(or) chemical properties of molecules. The approach proposed in this paper makes use of intelligent techniques for clustering the patterns of hydrogen bonds by similarity, these patterns extracted from the spatial structure of protein molecules, recorded in the files of the PDB (Protein Data Bank). A new algorithm, which allows clustering of data with nonuniform distribution was developed for this purpose. To align spatialy these patterns already grouped in a cluster is used a genetic algorithm that rotates the patterns each other in a way to obtain the aligment of them. The prediction of the position of atoms of hydrogen is done by the training of a MLP (multi layer perceptron) neural network that uses as input the data of the patterns of hydrogen bond contained in a given cluster, previously aligned. The new approach proved to be effective, with a good rate of success in the prediction of the position of hydrogen atoms contained in a cluster after training the neural network
|
399 |
Identificação de espécies vegetais por meio da análise de textura foliar / Plant species recognition by leaf texture analysisDalcimar Casanova 24 October 2008 (has links)
A biodiversidade das espécies existentes no riquíssimo reino vegetal, tornam os modelos tradicionais de taxonomia uma tarefa muito complexa e morosa, na qual o processo de classificação é tradicionalmente realizado manualmente. As dificuldades presentes nesse processo implicam na existência de poucas pesquisas de classificação vegetal utilizando métodos matemáticos e computacionais. Desta forma, visando contribuir com as técnicas de taxonomia já desenvolvidas, este estudo objetiva desenvolver e testar uma metodologia computacional de identificação de espécies vegetais por meio da análise da textura foliar. Motivado pelo projeto TreeVis, este trabalho realiza uma revisão dos métodos utilizados para análise de textura em imagens digitais (foco concentrado em extração de características e classificação), investigando a aplicabilidade de métodos tradicionais como matrizes de coocorrência, técnicas estado da arte como Gabor wavelets e também de novos e promissoras técnicas de análise de textura, como a dimensão fractal volumétrica. No contexto de classificação investiga-se métodos para reconhecimento de padrões lineares com base em análise de dados multivariados, não lineares com base na teoria das Redes Neurais Artificiais e métodos simples para combinação de diferentes classificadores (comitê de máquinas). Apesar da alta similaridade entre classes e similaridade intraclasses não adequada, os resultados alcançados mostraram-se excelentes. A melhor estratégia de classificação, utilizando comitê de máquinas com descritores de Gabor wavelets/cor e dimensão fractal volumétrica/cor, obteve uma probabilidade de acerto global de 96:32% nas 40 classes estudadas. Esse resultado demonstra como os métodos computacionais de análise de imagens, em especial análise de textura, podem contribuir facilitando e agilizando a tarefa de identificação de espécies vegetais / Biodiversity of species existing in the plant kingdom make the use of traditional models of taxonomy, a process of classification traditionally performed manually, a very complex and time-consuming task. Most of difficulties in that process result from the existence of few researches on plant classification using mathematical and computational methods. In this way, to contribute with the taxonomy techniques already developed, this study aims to develop and test a computational method for identifying plant species by leaf texture analysis. Motivated by the TreeVis project, this work is a comprehensive revision of texture analysis methods used in digital images (focus concentrated in features extraction and classification). This study investigates the applicability of traditional methods such as co-occurrence matrix, state of the art techniques as Gabor wavelets, and new and promising texture analysis methods, such as volumetric fractal dimension. In classification context is investigated methods of pattern recognition based on multivariate data analysis, artificial neural networks and committee machines. Although leaf classes present high similarity between classes and not appropriate similarity intraclasses, the results obtained are excellent. The best strategy for classification, using committee machines with descriptors of Gabor wavelets/color and volumetric fractal dimension/color, yielded a high probability of success, 96:32% in 40 classes studied. This result demonstrates how computational methods of images analysis, in particular texture analysis, can contribute and make more easier and faster the task of identifying plant species
|
400 |
CITRUSVIS - Um sistema de visão computacional para a identificação do fungo Guignardia citricarpa, causador da mancha preta em citros / Not availableMário Augusto Pazoti 27 April 2005 (has links)
As pragas e doenças apresentam-se como um desafio para a citricultura brasileira em razão do impacto económico que elas causam à produção. Neste trabalho é dado destaque à doença da mancha preta (MPC), causada pelo fungo Guignardia citricarpa. Essa doença provoca lesões no fruto, depreciando-o no mercado de frutas in natura, além de causar amadurecimento e queda precoce. Um dos principais agravantes da doença é a demora no aparecimento dos sintomas, sendo muito importante detectar a presença dos esporos do fungo no pomar, antes que os sintomas apareçam. Dessa maneira, há a possibilidade de se controlar a doença de forma eficaz, aplicando-se quantidades menores de fungicidas e, consequentemente, reduzindo os custos da produção e os efeitos deletérios ao meio-ambiente. Atualmente, a detecção desses esporos é realizada por meio da análise de amostras coletadas nos pomares. Essa análise é efetuada por especialistas que realizam a identificação e a contagem dos ascósporos manualmente. Com o objetivo de automatizar esse processo, um conjunto de técnicas para a análise das imagens e a caracterização dos ascósporos do fungo a partir da forma foi estudado e comparado. Dentre as técnicas, a curvatura e os descritores de Fourier apresentaram resultados bastante satisfatórios e foram utilizados na implementação do protótipo de um sistema de visão computacional - o CITRUSVIS, que analisa e identifica os ascósporos existentes nas imagens dos discos de coleta. / The pest and disease management is one of the significant factors in the citrus culture. This work focuses on the black spot disease ( C B S ) , a fungai disease caused by Guignardia citricarpa that occasions sunken lesions in the rind of fruits causing precocious maturation, accented fali, depreciation for in natura fruit market and increase of the production costs for disease controlling. One of the main problems to control the CBS disease is the delay to appearance of symptom (when the orchard is already infected), and the fungai presence identification is necessary as soon as possible, allowing the appliance of procedures to control it. Nowadays, spores identification, particularly the ascospores (sexual spores), is made by collecting suspended particles in orchards blown on discs, which are analyzed by specialists using the microscope. The use of a computer aided vision system to assist the spores identification is one of the strategies to speed up this process. In this work, methods to analyze and characterize the spores, based on its shape, were studied and compared. Among them, the shape curvature method and the Fourier descriptors, chosen for presenting the best result, were implemented in a system - the CITRUS Vis - to analyze the images and identify the ascospores.
|
Page generated in 0.3514 seconds