Spelling suggestions: "subject:"reconhecimento dde padrões"" "subject:"reconhecimento dde ladrões""
451 |
Análise e extração de características de imagens termográficas utilizando componentes principais /Santos, Gilnete Leite dos. January 2010 (has links)
Orientador: João Antonio Pereira / Banca: Amarildo Tabone Paschoalini / Banca: Renê Pegoraro / Resumo: As técnicas de termografia vêm atualmente ganhando espaço como técnicas de manutenção preditiva, principalmente, por seu caráter não invasivo (ferramenta de não contato) que possibilita o monitoramento do aquecimento de máquinas e equipamentos em operação ou mesmo energizados. A utilização de câmeras termográficas hoje é uma realidade em vários setores industriais para monitoramento e detecção de falhas com base na temperatura. Entretanto, a utilização de câmaras termográficas na manutenção não deve se restringir apenas à avaliação da temperatura, uma vez que as imagens termográficas são sinais que apresentam padrões complexos que podem captar as diferentes características e condição de operação do equipamento. Outras informações além da temperatura poderiam ser observadas para uma avaliação mais consistente do estado de operação do equipamento. Este trabalho discute a utilização da técnica da estatística multivariada, Análise de Componentes Principais (ACP) para o processamento e análise de um conjunto de imagens termográficas. Essa proposta visa à identificação de padrões associados às variações térmicas das imagens, bem como, a interpretação desses dados em termos da sua variabilidade espacial/temporal para aplicação na manutenção preditiva com base na termografia. Num primeiro momento a técnica foi aplicada para a avaliação de um conjunto de dados (imagens térmicas) obtidos a partir da simulação do aquecimento de um dado componente (chave elétrica), cujo objetivo foi testar e verificar a validade da proposta e do programa desenvolvido. Posteriormente a técnica foi aplicada para o acompanhamento e avaliação do aquecimento de componentes de um modelo simplificado de um painel de telefonia, formado por blocos de alumínio fixados em uma placa de acrílico. A análise no modo espacial e no modo temporal do conjunto de ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Thermography techniques are currently gaining ground as predictive maintenance techniques, mainly due to its non-invasive character (non-contact tool) that allows the monitoring of heating condition of machines and equipment also in operation and even energized. The use of thermographic cameras is now a reality in many industrial and electrical sectors for monitoring and fault detection based on temperature. However, the use of thermal imagers in the maintenance should not be restricted to only the evaluation of temperature, since the thermographic images are signs that show complex patterns and they can capture the different characteristics of the actual condition of the monitored equipment. Information other than temperature could be observed for a more consistent evaluation of its state of operation. This paper discusses the propose of use of the multivariate analysis technique, Principal Component Analysis (PCA) for the processing and analysis of a series of thermographic images in order to identify patterns associated with temperature variations of the images, as well as, the interpretation of these data in terms of their spatial/temporal variability. Initially the technique was used to the analysis of data (thermal images) obtained from the simulation of heating conditions of a component (electric switch) aiming at to test and verify the validity of the proposal and program development. Later the technique was applied to the monitoring and evaluation of the heating condition of components of a simplified model of a telephone panel, formed by aluminum blocks fixed in a plate of acrylic. The analysis in the spatial and temporal mode of the set of thermograms obtained for different heating conditions of the blocks, it showed that it is possible to verify and establish correlations between the Principal Components and the thermal profile of the system / Mestre
|
452 |
SSVEP-EEG signal pattern recognition system for real-time brain-computer interfaces applications /Giovanini, Renato de Macedo. January 2017 (has links)
Orientador: Aparecido Augusto de Carvalho / Resumo: There are, nowadays, about 110 million people in the world who live with some type of severe motor disability. Specifically in Brazil, about 2.2% of the population are estimated to live with a condition of difficult locomotion. Aiming to help these people, a vast variety of devices, techniques and services are currently being developed. Among those, one of the most complex and challenging techniques is the study and development of Brain-Computer Interfaces (BCIs). BCIs are systems that allow the user to communicate with the external world controlling devices without the use of muscles or peripheral nerves, using only his decoded brain activity. To achieve this, there is a need to develop robust pattern recognition systems, that must be able to detect the user’s intention through electroencephalography (EEG) signals and activate the corresponding output with reliable accuracy and within the shortest possible processing time. In this work, different EEG signal processing techniques were studied, and it is presented the development of a EEG under visual stimulation (Steady-State Visual Evoked Potentials - SSVEP) pattern recognition system. Using only Open Source tools and Python programming language, modules to manage datasets, reduce noise, extract features and perform classification of EEG signals were developed, and a comparative study of different techniques was performed, using filter banks and Discrete Wavelet Transforms (DWT) as feature extraction approach... (Resumo completo, clicar acesso eletrônico abaixo) / Mestre
|
453 |
Padrões mapeados localmente em multiescala aplicados ao reconhecimento de faces / Multi-scale local maped pattern applied for face recognitionSilva, Eduardo Machado 06 April 2018 (has links)
Submitted by EDUARDO MACHADO SILVA (eduardodz@outlook.com) on 2018-06-02T22:50:24Z
No. of bitstreams: 1
Eduardo_Final.pdf: 7020230 bytes, checksum: 17f5f419806417111d44cacbf46f3f0d (MD5) / Approved for entry into archive by Elza Mitiko Sato null (elzasato@ibilce.unesp.br) on 2018-06-04T16:05:04Z (GMT) No. of bitstreams: 1
silva_em_me_sjrp.pdf: 7020230 bytes, checksum: 17f5f419806417111d44cacbf46f3f0d (MD5) / Made available in DSpace on 2018-06-04T16:05:04Z (GMT). No. of bitstreams: 1
silva_em_me_sjrp.pdf: 7020230 bytes, checksum: 17f5f419806417111d44cacbf46f3f0d (MD5)
Previous issue date: 2018-04-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O Reconhecimento facial é uma das tecnologias biométricas mais utilizadas em sistemas automatizados que necessitam garantir a identidade de uma pessoa para acesso autorizado e monitoramento. A grande aceitação do uso da face tem várias vantagens sobre outras tecnologias biométricas: ela é natural, não exige equipamentos sofisticados, a aquisição de dados é baseada em abordagens não invasivas, e pode ser feito a distância, de maneira cooperativa ou não. Embora muitos estudos em reconhecimento facial tenham sido feitos, problemas com variação de iluminação, poses com oclusão facial, expressão facial e envelhecimento ainda são desafios, pois influenciam a performance dos sistemas de reconhecimento facial e motivam o desenvolvimento de novos sistemas de reconhecimento que lidam com esses problemas e sejam mais confiáveis. Este trabalho tem como objetivo avaliar a técnica de Padrões Localmente Mapeados em Multiescala (MSLMP) para o reconhecimento facial. Técnicas baseadas em algoritmos genéticos e processamento de imagens foram usadas para obter melhores resultados. Os resultados obtidos chegam a 100% de acurácia para alguns banco de dados. A base de dados MUCT ´e, em particular, bastante complexa, ela foi criada em 2010 com o objetivo de aumentar a quantidade de bancos de dados disponíveis com alta variação de iluminação, idade, posições e etnias, e por isso, ´e um banco de dados difícil quanto ao reconhecimento automático de faces. Uma nova técnica de processamento baseada na média dos níveis de cinza da base foi desenvolvida. / Facial recognition is one of the most used biometric technologies in automated systems which ensure a person’s identity for authorized access and monitoring. The acceptance of face use has several advantages over other biometric technologies: it is natural, it does not require sophisticated equipment, data acquisition is based on non-invasive approaches, and can it be done remotely, cooperatively or not. Although many facial recognition studies have been done, problems with light variation, facial occlusion, position, expression, and aging are still challenges, because they influence the performance of facial recognition systems and motivate the development of more reliable recognition systems that deal with these problems. This work aim to evaluate the Multi-scale Local Mapped Pattern (MSLMP) technique for the facial recognition. Techniques based on genetic algorithms and image processing were applied to increase the performance of the method. The obtained results reach up to 100% of accuracy for some databases. A very difficult database to deal is the MUCT database which was created in 2010 with aim of providing images with high variation of lighting, age, positions and ethnicities in the facial biometry literature, which makes it a highly difficult base in relation to automated recognition. A new processing technique was developed based on the average gray levels of the images of the database.
|
454 |
Reconhecimento de palavras manuscritas usando análise multi-vistas. / Recognition of handwritten words using multi-view analysis.OLIVEIRA JÚNIOR, José Josemar de. 14 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-14T17:09:02Z
No. of bitstreams: 1
JOSÉ JOSEMAR DE OLIVEIRA JÚNIOR - TESE PPGEE 2006..pdf: 1171314 bytes, checksum: 0928567e064b5758d1d9df30928e1575 (MD5) / Made available in DSpace on 2018-08-14T17:09:02Z (GMT). No. of bitstreams: 1
JOSÉ JOSEMAR DE OLIVEIRA JÚNIOR - TESE PPGEE 2006..pdf: 1171314 bytes, checksum: 0928567e064b5758d1d9df30928e1575 (MD5)
Previous issue date: 2006-10-30 / Capes / Este trabalho propõe uma metodologia de reconhecimento de palavras manuscritas usando diferentes arquiteturas que são inspiradas nas conclusões obtidas em relação aos mecanismos perceptivos e o processo de leitura humano. Como estudo de caso, a abordagem é aplicada ao problema do reconhecimento de palavras manuscritas que representam os meses do ano. Este problema é relevante pois ocorre com frequência no processamento de cheques bancários, dentre outras aplicações. O sistema de análise multi-vistas proposto é formado pelas seguintes arquiteturas: pseudo-segmentação de radical, pseudo-segmentação fixa e pseudo-segmentação variável. Cada arquitetura é formada por um módulo de extração de primitivas, inspirado em modelos perceptivos e específico para o tipo de segmentação utilizado e por um classificador apropriado. Os testes foram realizados com uma base de palavras construída especificamente
para este fim, também descrita neste trabalho. / This work presente a multiple classifier system applied to the handwritten word recognition
(HWR) probiem. The goal is to investigate the use of perceptual models in the development of recognition systems. The handwritten words are analyzed considering different approximation leveis, in order to get a computational approach of the reading human process. The application proposed is the recognition of the Portuguese handwritten names of the months. The considered system is formed by the following architectures: 2 fixed sub-regions, 8 fixed sub-regions and N variable sub-regions. Each architecture is formed by a module of features extraction, based on perceptual models and specific for each type of segmentation, and an appropriate classifier. The experimental teste have performed on a database specifically built for this probiem, also described in this work.
|
455 |
Sistema de reconhecimento de palavras manuscritas dependente do usuário. / User-defined handwriting recognition system.VELOSO, Luciana Ribeiro. 14 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-14T17:31:43Z
No. of bitstreams: 1
LUCIANA RIBEIRO VELOSO - TESE PPGEE 2009..pdf: 1635341 bytes, checksum: 2d73699d44711c0cc83e60f235f32c94 (MD5) / Made available in DSpace on 2018-08-14T17:31:43Z (GMT). No. of bitstreams: 1
LUCIANA RIBEIRO VELOSO - TESE PPGEE 2009..pdf: 1635341 bytes, checksum: 2d73699d44711c0cc83e60f235f32c94 (MD5)
Previous issue date: 2009-03 / Este trabalho apresenta um sistema de reconhecimento de palavras manuscritas
isoladas dependente do escritor. Este sistema caracteriza-se por utilizar uma etapa de
pré-processamento, que visa corrigir imperfeições e normalizar variações na imagem da
palavra manuscrita, uma etapa de segmentação explícita, que visa dividir a palavra em
caracteres ou segmentos de caracteres, uma etapa de extração de características, que
tem por finalidade representar a imagem por três vetores de características (perceptivas,
globais e direcionais) e um módulo de quantização vetorial, que tem o objetivo
de realizar o mapeamento de um vetor de características em um vetor de observação
(ou vetor de símbolos). Os símbolos correspondem aos índices (dos vetores-código)
gerados na representação (quantização vetorial) da sequência de características com o
uso dos dicionários. Finalizando, tem-se a etapa de classificação realizada por Modelos
Escondidos de Markov, na qual os caracteres são reconhecidos individualmente e combinados para formar a palavra. Testes experimentais foram realizados com uma base
de dados construída especificamente para este fim, contendo amostras de manuscritos
de4escritoresdistintos. Osistemadereconhecimentodepalavrasmanuscritasisoladas
dependente do escritor obteve taxas de reconhecimento que variaram entre 83,31% a
92,96% dependendo do escritor analisado. Os resultados apresentados mostram que
o sistema apresenta um ótimo desempenho quando utilizado para reconhecer palavras
através dos modelos de caracteres. / This work presents a writer-dependent system for isolated handwritten cursive word
recognition. This system is characterized by the utilization of a pre-processing state,
which corrects imperfections and normalizes variations in the word image, an explicit
segmentation stage, which splits the word into characters or character segments, a feature
extraction stage, which represents the image by three feature vectors (perceptive,
global and directional features), and a vector quantization module, which performs the
mapping of a feature vector into an observation vector (or symbols vector). The symbols
correspond to indices (the code vectors) generated by the representation (vector
quantization) of the feature sequences with the use of dictionaries. Finally, there is the
classification stage, performed by Hidden Markov Models, where characters are individually recognized and combined to form a valid word. Experimental tests were conducted with a database specifically built for this problem, containing samples of manuscripts from 4 different writers. The writer-dependent system for isolated handwritten cursive word recognition was recognition rate between 83.31% and 92.96% depending writer analyzed. The results show that the system offers optimum performance when used
word recognize by the characters models.
|
456 |
Desenvolvimento e aplicação de Heurística para calcular pesos e bias iniciais para o “Back-Propagation” treinar Rede Neural Perceptron Multicamadas / Development and application of a Heuristic to initialize weights and bias for the Back-Propagation to train Multilayer Perceptron Network NeuralSilva, Aldemário Alves da 18 August 2017 (has links)
Submitted by Lara Oliveira (lara@ufersa.edu.br) on 2017-09-08T22:30:39Z
No. of bitstreams: 1
AldemárioAS_DISSERT.pdf: 18856416 bytes, checksum: dcd37bbe9d111ef051c4d27c3481a41f (MD5) / Approved for entry into archive by Vanessa Christiane (referencia@ufersa.edu.br) on 2017-09-11T16:27:51Z (GMT) No. of bitstreams: 1
AldemárioAS_DISSERT.pdf: 18856416 bytes, checksum: dcd37bbe9d111ef051c4d27c3481a41f (MD5) / Approved for entry into archive by Vanessa Christiane (referencia@ufersa.edu.br) on 2017-09-11T16:28:25Z (GMT) No. of bitstreams: 1
AldemárioAS_DISSERT.pdf: 18856416 bytes, checksum: dcd37bbe9d111ef051c4d27c3481a41f (MD5) / Made available in DSpace on 2017-09-11T16:29:16Z (GMT). No. of bitstreams: 1
AldemárioAS_DISSERT.pdf: 18856416 bytes, checksum: dcd37bbe9d111ef051c4d27c3481a41f (MD5)
Previous issue date: 2017-08-18 / The training of Multilayer Perceptron Neural Network (MLPNN) done by exact algorithm to find the maximum accuracy is NP-hard. Thus, we use the algorithm Back-Propagation who needs a starting point (weights and bias initials) to compute the training of the MLPNN. This research has developed and implemented a heuristic algorithm HeCI - Heuristic to Calculate Weights and Bias Initials - to compute the data to train the MLPNN and return the starting point for the Back-Propagation. HeCI uses Principal Component Analysis, Least Square Method, Probability Density Function of the Normal Gaussian Distribution, two strategic configurations, and partially controls the number of MLPNN training epochs. Experimentally, HeCI was used with Back-Propagation in MLPNN training to recognize patterns and solve data classification problems. Six case studies with datasets between Health, Business and Botany were used in the experiments. The methodology of this research uses Deductive analysis by the Experimental method with Quantitative approach and hypothesis tests: Test of Fridman with post Teste of Tukey HSD Post-hoc and Wilcoxon Test-M W. The results of accuracy have increased significantly improving attested by evaluation of tests of hypotheses, inferringstatistical robustness of the result motivated by HeCI / O treinamento de Rede Neural Perceptron Multicamadas (RNPM) feito por algoritmo exato para encontrar a máxima acurácia é NP-Difícil. Sendo assim, usa-se o algoritmo "Back-Propagation" que necessita de um ponto de partida (pesos e bias iniciais) para computar o treinamento da RNPM. Esta pesquisa desenvolveu e aplicou um algoritmo heurístico HeCI - Heurística para Calcular Pesos e Bias Iniciais - para computar os dados de treinamento da RNPM e retornar o ponto de partida para o "Back-Propagation". A HeCI usa Análise de Componentes Principais, Método dos Mínimos Quadrados, Função de Densidade de Probabilidade da Normal Distribuição Gaussiana, duas configurações estratégicas e controla parcialmente o número de épocas de treinamento da RNPM. Experimentalmente, a RNPM foi treinada usando "Back-Propagation" com HeCI, para reconhecer padrões e resolver problemas de classificação de dados. Seis estudos de caso com "datasets" entre as áreas de Saúde, Negócio e Botânica foram usados nos experimentos. A metodologia desta pesquisa usa análise Dedutiva pelo método Experimental com abordagem Quantitativa e testes de hipóteses: Teste de Fridman com Pós Teste de Tukey HSD Post-hoc e Teste de Wilcoxon-M-W. Os resultados de acurácia incrementaram melhoria significativa atestada pela avaliação dos testes de hipóteses, inferindo estatisticamente robustez de resultado motivado pela HeCI / 2017-09-08
|
457 |
Desenvolvimento e avaliação de um sistema de visão artificial para classificação de madeira serrada de eucalipto / Developing and evaluating an machine vision system for grading of the eucalyptus sawn lumberKhoury Junior, Joseph Kalil 29 March 2004 (has links)
Submitted by Marco Antônio de Ramos Chagas (mchagas@ufv.br) on 2017-02-22T16:16:57Z
No. of bitstreams: 1
texto completo.pdf: 637669 bytes, checksum: e730f93df33c88ccacf7199d6d74a720 (MD5) / Made available in DSpace on 2017-02-22T16:16:57Z (GMT). No. of bitstreams: 1
texto completo.pdf: 637669 bytes, checksum: e730f93df33c88ccacf7199d6d74a720 (MD5)
Previous issue date: 2004-03-29 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Na seleção de madeira serrada para fabricação de móveis e utilização em projeto de interiores, a aparência é o requisito de maior importância. Classificando e selecionando-se as peças, pode-se conseguir um produto com a aparência desejada. Dessa forma, a indústria de madeira serrada tem dispensado especial atenção às etapas de classificação e seleção de madeira serrada. A etapa de classificação visual é considerada uma atividade estressante, em razão da exigência de concentração para identificar e mensurar defeitos nas peças de madeira e classificá-las por tempo prolongado. Os sistemas de classificação, que utilizam imagens digitais no processo de automatização são conhecidos como sistemas de visão artificial. No presente trabalho, o objetivou-se desenvolver um algoritmo com base em processamento de imagens digitais para classificação de madeira serrada de eucalipto, para aplicação em um sistema de visão artificial. Para o desenvolvimento e testes dos algoritmos, foram coletadas imagens digitais coloridas de peças de madeira serrada de eucalipto, secas ao ar e previamente aplainadas. As amostras foram escolhidas de forma que estariam presentes, além de madeiras limpas, os defeitos visuais que afetavam a qualidade da peça de madeira serrada. Características obtidas de imagens de defeitos da madeira foram utilizadas para desenvolver e testar dois tipos de classificadores: um classificador estatístico e outro com base em redes neurais. Um algoritmo foi implementado, para classificação de madeira serrada com base na norma ABNT - NBR 14806 (Madeira serrada de eucalipto Requisitos), que estabelece os requisitos exigidos para madeira serrada de eucalipto, proveniente de florestas plantadas. As características utilizadas como descritores dos defeitos e madeira limpa foram percentis de blocos da imagem das bandas do vermelho, verde e azul. Foram testados dois tamanhos de blocos da imagem 64x64 pixels e 32x32 pixels. Os resultados das exatidões globais, encontrados nestes dois tamanhos de blocos para os classificadores estatísticos, foram de 81% e 76%, enquanto para as redes neurais foram de 83% e 77%, respectivamente. O classificador estatístico apresentou melhor identificação em algumas classes especificas de defeitos. O algoritmo para classificação das faces das peças de madeira serrada foi implementado, utilizando-se o classificador estatístico e blocos de 32x32 pixels para identificar os tipos de defeito e madeira limpa. A exatidão global foi de 65%, na classificação de cada face larga da peça independentemente. Entretanto, a exatidão foi de 90% na classificação da madeira serrada, em que ambas as faces foram avaliadas simultaneamente. A ocorrência de erros proveniente da classificação não foi devida à identificação de madeira limpa, mas, principalmente, à confusão entre alguns tipos de defeitos. / In selecting the sawn lumber for production of furniture manufacture and utilization in interiors design, a very important requirement is the appearance. The grading and selection of the boards are fundamental stages for getting a product with the desired appearance. So, the sawn lumber industry has giving a special attention to these stages. The visual classification stage is considered as a stressful activity, because its requires special concentration in identifying and measuring the defects in the boards, as well as to classify them for an extended time. The grading systems using digital images in the automation process are known as machine vision systems. This study aimed at the development of an algorithm based on the digital image processing for grading the eucalyptus sawn lumber to be applied on a machine vision system. Some colored digital images of the air-dried and flattened eucalyptus boards were collected in order to develop and test the algorithms. The board samples were chosen in such a way that would show clear wood as well as the visual defects affecting the quality of the board. The characteristics obtained from the lumber defect were used to developing and testing two classifier types: a statistical one and the artificial neural network. Finally, an algorithm was implemented for the board classification based on the Brazilian norm ABNT - NBR 14806 (Eucalyptus sawn Wood Requirements) that establishes the requirements for eucalyptus sawn lumber from the planted forests. The characteristics used as descriptors of the defects and clear wood were the percentiles of the red, green and blue bands of the image blocks. Two block sizes of the image (64x64 and 32x32) pixels were tested. The overall accuracy found in these two block sizes for the statistical classifiers were 81% and 76%, whereas the neural networks reached 83% and 77%, respectively. And the statistical classifier showed a better identification for some specific defect classes. The algorithm for grading the face of the sawn lumber boards was implemented, by using the statistical classifier and the boards (32x32 to pixels) to identify both the defect types and clear wood. The overall accuracy was 65%, when classifying independently each wide face of the board. However, an accuracy of 90% was attained, when classifying the sawn lumber in which both faces were simultaneously evaluated. The occurrence of the errors upon classification were not due to the identification of clear wood, but rather to the embarrassment among some kinds of defects. / Tese importada do Alexandria
|
458 |
Aplicação da técnica SIFT na identificação de olhos humanos / SIFT technique applied on human eyes identificationBernardo Fernandes Cruz 29 August 2008 (has links)
Foi desenvolvido nesta pesquisa um estudo sobre a utilização de imagens de olhos humanos em um sistema biométricos de identificação. Este trabalho apresenta os resultados obtidos na
comparação de olhos humanos utilizando a técnica Scale Invariant Feature Transform (SIFT). A técnica SIFT é uma ferramenta capaz de identificar objetos, tendo como principais características: a invariância as transformações de rotação, translação, escala e oclusão do objeto dentro da imagem. Uma pesquisa sobre os principais sistemas biométricos de identificação existentes foi realizada. Para as comparações entre as imagens utilizou-se um
banco de imagens de olhos humanos denominado, UBIRIS, obtendo resultados muito interessantes. / This research developed a study about the use of images of human eyes in a biometric identification system. This work presents the results of the comparison of human eyes using
the technique Scale Invariant Feature Transform (SIFT). The SIFT technique is a tool capable of identify objects, with the main features: the alteration of rotation invariance, translation,
scale and occlusion of the object within the picture. A search on the main systems of biometric identification was made. For the comparisons between the images we used a bank of images of human eyes called UBIRIS, getting very interesting results.
|
459 |
Improving face recognition with multispectral fusion and support vector machines /Chiachia, Giovani. January 2009 (has links)
Orientador: Aparecido Nilceu Marana / Banca: Roberto Marcondes Cesar Junior / Banca: Ivan Rizzo Guilherme / Resumo: O reconhecimento facial é uma das principais formas de identificação humana. Apesar das pesquisas em reconhecimento facial automático terem crescido substancialmente ao longo dos últimos 35 anos, identificar pessoas a partir da face continua sendo um desafio para as áreas de Visão Computacional e Reconhecimento de Padrões. Em função dos cenários variarem desde a identificação a partir de fotografias até o reconhecimento baseado em vídeos sem nenhum tipo de controle ao serem gravados, os maiores desafios estão relacionados à independência contra diferentes tipos de iluminação, pose e expressão. O objetivo desta dissertação é propor técnicas que possam contribuir para a melhoria dos sistemas de reconhecimento facial. A primeira técnica endereça o problema da iluminação através da fusão dos espectros visível e infravermelho da face. Através desta abordagem, as taxas de reconhecimento foram melhoradas em 2.07% enquanto a taxa de erro igual (EER) foi reduzida em 45.47%. A segunda técnica trata do caso da extração e classificação de características faciais. Ela propõe um novo modelo para reconhecimento facial através do uso de características extraídas por Histogramas Census e de uma técnica de reconhecimento de padrões baseada em Máquinas de Vetores de Suporte (SVMs). Este outro grupo de experimentos nos possibilitou aumentar a precisão do reconhecimento no teste FERET fa/fb em 0.5%. Além destes resultados, algumas contribuições adicionais deste trabalho que merecem ser destacadas são a análise da dependência estatística entre classificadores de espectros diferentes e considerações sobre o comportamento de uma única C-SVC SVM para identificação de pessoas de forma eficaz. / Abstract: Face recognition is one of the primary ways of human identification. Although researches on automated face recognition have broadly increased along the last 35 years, it remains a challenging task in the fields of Computer Vision and Pattern Recognition. As the scenarios varies from static and constrained photographs to uncontrolled video images, the challenging issues on automatic face recognition are usually related with variations in illumination, pose and expressions. The goal of this master thesis is to propose techniques for the improvement of face recognition systems. The first technique addresses the problem of illumination by fusing the visible and the infrared spectra of the face. With this approach the recognition rates were improved in 2.07% while the Equal Error Rate (EER) were reduced in 45.47%. The second technique addresses the issue of face features extraction and classification. It proposes a new framework for face recognition by using features extracted by Census Histograms and a pattern recognition technique based on Support Vector Machines (SVMs). This other group of experiments enabled us to increase the recognition accuracy in the FERET fa/fb test in 0.5%. Beyond these results, additional contributions of this work that deserve to be highlighted are the statistical dependency analysis between face recognition systems based on different spectra and a better comprehension about the behavior of a single C-SVC SVM to reliably predict faces identities. / Mestre
|
460 |
Combinação de múltiplos classificadores para reconhecimento de face humanaSalvadeo, Denis Henrique Pinheiro 24 July 2009 (has links)
Made available in DSpace on 2016-06-02T19:05:35Z (GMT). No. of bitstreams: 1
2559.pdf: 3778790 bytes, checksum: 6c638e612ae760d51fad8def01969ed1 (MD5)
Previous issue date: 2009-07-24 / Universidade Federal de Sao Carlos / Lately, the human face object has been exploited by the advent of systems involving biometrics, especially for applications in security. One of the most challenging applications is the problem of human face recognition, which consists of determining the correspondence between an input face and an individual from a database of known persons. The process of face recognition consists of two steps: feature extraction and classification. In the literature of face recognition, different techniques have been used, and they can be divided into holistic techniques (implicit feature extraction), feature-based techniques (explicit feature extraction) and hybrid techniques (involving the two previous). In many articles, holistic techniques have proved to be most efficient and generally they involve methods of statistical pattern recognition as Principal Component Analysis (PCA), Independent Component Analysis (ICA), Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), and Neural Networks. For problems such as human face recognition in digital images, a crucial point is the ability to generalize. The solution for this problem is complex due to the high dimensionality of data and the small number of samples per person. Using a single classifier would reduce the ability of recognition, since it is difficult to design a single classifier in these conditions that capture all variability that span the human faces spaces. Thus, this work proposes to investigate the combination of multiple classifiers applied to the problem of face recognition, defining a new scheme to resolve this problem, varying the feature extraction with PCA and some its variants and LDA, K-Nearest Neighbor (K-NN) and Maximum Likelihood (MaxLike) classifiers and several trainable or not trainable methods for combining classifiers. Still, to mitigate the problem of small sample size (SSS), a technique for regularizing the covariance matrix was used. Finally, to assess the classification performance, Holdout and Resubstitution methods were used to partition the data set and the Kappa coefficient and Z and T statistics were used to measure the performance of the proposed scheme. From the experiments it was concluded that the best sub-schemes were the RBPCA/MaxLike-PCA/NN-KL5/NN classifiers combined by the Majorite Vote Rule for the ORL database and the RLDA+RPCA/MaxLike-KL4/NNKL5/ NN classifiers combined by the Sum Rule for the AR database, obtaining Kappa coefficients of 0.956 (mean) and 0.839, respectively. Besides that, it has been determined that these sub-schemes are robust to pose (ORL database), illumination and small change of the facial expression, but they were affected by occlusions (AR database). / Nas últimas décadas, o objeto face humana tem sido muito explorado graças ao advento dos sistemas envolvendo biometria, especialmente para aplicações nas áreas de segurança. Uma das aplicações mais desafiadoras é o problema de reconhecimento de face humana, que consiste em determinar a qual indivíduo em um banco de dados de pessoas conhecidas uma imagem de face corresponde. O processo de reconhecimento de face consiste basicamente em duas etapas: extração de atributos e classificação. Na literatura de reconhecimento de faces, diversas técnicas foram utilizadas, podendo ser divididas em técnicas holísticas (extração de atributos implícita), técnicas baseadas em características (extração de atributos explícita) e técnicas híbridas (envolvem as duas anteriores). Em maior número na literatura, as técnicas holísticas demonstraram ser mais eficientes e envolvem em geral, métodos de reconhecimento de padrões estatísticos como Principal Component Analysis (PCA), Independent Component Analysis (ICA), Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), além de Redes Neurais. Para problemas como o reconhecimento de face humana em imagens digitais, um ponto determinante é a capacidade de generalização. Por esse problema ser complexo de ser resolvido, devido à alta dimensionalidade dos dados e ao número pequeno de amostras por pessoa, utilizar um único classificador tornaria reduzida a capacidade de reconhecimento, já que é difícil projetar um único classificador nestas condições que capture todas as variações que formam o espaço de faces humanas. Dessa forma, este trabalho se propôs à investigação de combinação de múltiplos classificadores aplicados ao problema do reconhecimento de face, obtendo um novo esquema para solução do mesmo, variando a extração de atributos com PCA e algumas variantes e LDA, classificadores K Vizinhos Mais Próximos e Máxima Verossimilhança e diversos combinadores treináveis ou não. Ainda, para amenizar o problema de poucas amostras, uma técnica de regularização de matrizes de covariância foi utilizada. Finalmente, para avaliação de desempenho utilizou-se Holdout e Resubstitution para particionar o conjunto de dados, assim como o coeficiente Kappa e testes de significância Z e T foram utilizados para medir o desempenho do esquema proposto. Dos experimentos concluiu-se que os melhores subesquemas foram o RBPCA/MaxVer-PCA/NN-KL5/NN → Votação por Maioria para o banco de dados ORL e o RLDA+RPCA/MaxVer-KL4/NN-KL5/NN → Soma para o banco de dados AR com coeficientes Kappa 0,956 (médio) e 0,839, respectivamente. Além disso, foi determinado que estes subesquemas são robustos à pose (ORL), iluminação e à pequenas variações de expressão facial, mas sofreram influência de oclusões (AR).
|
Page generated in 0.0746 seconds