Spelling suggestions: "subject:"reconhecimento dde padrões"" "subject:"reconhecimento dde ladrões""
521 |
Análise e reconhecimento digital de formas biológicas para o diagnóstico automático de parasitas do gênero Eimeria / Biological shape analysis and digital recognition for the automatic diagnosis of parasites of the genus EimeriaCesar Armando Beltran Castañon 16 January 2007 (has links)
O gênero Eimeria compreende um grupo de protozoários da classe Coccidia que infecta uma grande variedade de hospedeiros. Um total de sete espécies distintas Eimeria podem infectar a galinha doméstica causando enterites com graves prejuízos econômicos. A identificação das espécies pode ser feita através da análise microscópica das diferentes características morfológicas dos oocistos, um dos estágios de desenvolvimento do parasita. Alternativamente, ensaios moleculares baseados na amplificação de alvos específicos de DNA também podem ser utilizados. Em ambos os casos, requer-se um laboratório especializado e, principalmente, pessoal altamente treinado. Neste trabalho é relatada uma abordagem computacional para a extração automática de características para a representação da forma das distintas espécies de Eimeria. Foram utilizadas imagens digitais do protozoário nas quais aplicou-se técnicas de processamento de imagens e visão computacional para sua representação morfológica, formando três grupos de características: medidas geométricas, caracterização da curvatura, e quantificação da estrutura interna. A morfologia dos protozoários foi representada por um vetor de características constituído por 14 dimensões, o qual constituiu o padrão de entrada para o processo de classificação. Para o reconhecimento dos padrões, foram usados dois classificadores Bayesianos, utilizando-se como funções de verossimilhança a Gaussiana e a de Dirichlet, respectivamente. O primeiro classificador apresentou as melhores taxas de acerto, enquanto o segundo demonstrou melhor desempenho segundo a análise por curvas ROC. Como prova de princípio de que o sistema poderia ser utilizado por usuários leigos para o diagnóstico à distância de parasitas, foi implementado o COCCIMORPH, um sistema de diagnóstico de Eimeria em tempo real. O sistema permite o envio de imagens via web, assim como o seu pré-processamento e classificação remotos, obtendo-se o resultado do diagnóstico em tempo real. Essa abordagem totalmente integrada e implementada é inédita para o diagnóstico de parasitas. Entre suas vantagens principais está o fato de que o diagnóstico pode ser obtido sem a necessidade do transporte físico de amostras biológicas para um laboratório de referência, evitando assim riscos de contaminação do ambiente. Para o treinamento do sistema, foram obtidas centenas de micrografias de cada uma das sete espécies de Eimeria que infectam a galinha doméstica. Essas imagens também foram usadas para a construção de um banco de acesso público de imagens (The Eimeria Image Database). Além disso, a metodologia de diagnóstico foi também aplicada e testada com onze espécies Eimeria de coelho doméstico. Com isso, foram gerados dados inéditos de morfometria, micrografias adicionais para o banco de imagens, e um sistema de classificação para esse conjunto adicional de parasitas. Finalmente, foram determinadas as distâncias entre as diferentes espécies de Eimeria, calculadas a partir dos dados morfométricos. As árvores de distância revelaram uma topologia muito similar com árvores obtidas a partir da inferência filogenética usando-se marcadores moleculares como o gene 18S de rRNA ou genomas mitocondriais. / The Eimeria genus comprises a group of protozoan parasites that infect a wide range of hosts. A total of seven different Eimeria species infect the domestic fowl, causing enteritis with severe economical losses. Species identification can be performed through microscopic analysis of the distinct morphological characteristics of the oocysts, a developmental stage of the parasite. Alternatively, molecular assays based on the amplification of specific DNA targets can also be used. In both cases, a well equipped laboratory and, especially, highly qualified personnel are required. In this work, we report a computational approach for the automatic feature extraction for shape representation of the different Eimeria species. Digital images of the parasites were used in order to apply image processing and computational vision techniques for shape characterization. Three groups of morphological features were constituted: geometric measures, curvature characterization, and internal structure quantification. The protozoan morphology was represented by a 14-dimension feature vector, which was used as the input pattern for the classification process. Two Bayesian classifiers were used for pattern recognition, using as a likelihood function the normal and the Dirichlet, respectively. The former classifier presented the best correct classification rates, whereas the latter showed a better performance in ROC curve analyses. As a proof of principle that this system could be utilized by end-users for a long-distance parasite diagnosis, we implemented COCCIMORPH, an integrated system for the real-time diagnosis of Eimeria spp. The system presents an interface for image uploading. Image preprocessing and diagnosis are performed remotely and the results displayed in real-time. This fully integrated and implemented system constitutes a novel approach for parasite diagnosis. Among the several advantages of the system, it is noteworthy that no biological sample transportation is required between the farm and the reference laboratory, thus avoiding potential environment contamination risks. To train the system, we used hundreds of micrographs of each one of the seven Eimeria species of domestic fowl. These images were used to compose a public image repository (The Eimeria Image Database). In addition, our diagnosis methodology was extended to the eleven Eimeria species that infect the domestic rabbit. With this integrated approach, a totally novel set of images and morphometric data of rabbit Eimeria were incorporated to the image database and, also to the remote diagnosis system. Finally, distance trees of the distinct Eimeria species of domestic fowl were computed from the morphometric data. The trees revealed a very similar topology with trees obtained with molecular phylogenetic markers such as the 18S rRNA gene and mitochondrial genomes.
|
522 |
Spatially explicit modeling on networks: understanding patterns & describing processes / Modelagem espacialmente explícita em redes: compreendendo padrões e descrevendo processosMiranda, Gisele Helena Barboni 28 May 2019 (has links)
In contrast to established approaches that analyze networks based on their structural properties, networks can also be studied by investigating the patterns that are evolved by a discrete dynamical system built upon them, such as cellular automata (CAs). Combined with networks these tools can be used to map the relationship between the network architecture and its impact on the patterns evolved by the governing spatially discrete dynamical system. This thesis focuses on the investigation of discrete spatially explicit models (SEMs), among which are CAs, for network analysis and characterization. The relationship between network architecture and its dynamic aspects concerning pattern formation is studied. Additionally, this work aims at the development of evolutionary methods that can be employed for extracting features from such patterns and then be used as network descriptors. In order to achieve this goal, methods that integrate the network structure with the SEMs were proposed, implemented and analyzed. The proposed family of network automata is characterized by birth-survival dynamics that results in different categories of spatio-temporal patterns. Such patterns were quantitatively assessed and used to characterize different network topologies and perform classification tasks in the context of pattern recognition. Inspired by the classic Life-like CA, the proposed Life-like Network Automata (LLNA) illustrate how such tasks can be performed in real-world applications. In addition, the rock-paper-scissors (RPS) model, normally implemented on square lattices, was investigated by defining it on networks. The obtained results confirm the potential of the proposed quantitative analysis of the spatio-temporal patterns for network classification. This quantitative analysis was performed for a set of different pattern recognition tasks and for the majority of them, the classification performance improved. In addition, the reliability of LLNA as a general tool for pattern recognition applications was demonstrated in a diverse scope of classification tasks. The applicability of structural network descriptors was also highlighted in the context of shape characterization in computer vision. Through the proposed approach, the link between these network descriptors and the shape properties, such as angle and curvature, was illustrated. Moreover, when chosen adequately, the network descriptors led to a better classification performance for different shape recognition tasks. Regarding the RPS model, we demonstrated that the presence of long-range correlations in some networks directly influence the RPS dynamics. Finally, it was shown how a commuter network can be used to predict influenza outbreaks. All the proposed methods use different aspects of network analysis and contribute to the study of CAs and other SEMs on irregular tessellations, in contrast to the commonly used regular topologies. In addition, new insights were obtained concerning pattern recognition in networks through the use of spatio-temporal patterns as network descriptors. / Em contraste às abordagens clássicas que analisam redes com base em suas propriedades estruturais, as redes também podem ser estudadas investigando-se os padrões desenvolvidos por um sistema dinâmico discreto construído sobre essas redes, como os autômatos celulares (CAs). Combinadas às redes, essas ferramentas podem ser usadas para se mapear a relação entre a arquitetura da rede e seu impacto nos padrões obtidos pelo sistema dinâmico subjacente. Esta tese está focada na investigação de modelos discretos espacialmente explícitos (SEMs), entre os quais os CAs, para análise e caracterização de redes. A relação entre a arquitetura da rede e seu aspecto dinâmico em relação à formação de padrões é investigada. Além disso, este trabalho visa o desenvolvimento de métodos evolutivos que podem ser usados para extrair características de tais padrões para, então, serem usados como descritores de redes. Para atingir este objetivo, métodos que integram a estrutura da rede com os SEMs foram propostos, implementados e analisados. A família de redes-autômatos proposta é caracterizada por uma dinâmica de nascimento-sobrevivência que resulta em diferentes categorias de padrões espaço-temporais. Tais padrões foram avaliados quantitativamente e utilizados para caracterizar diferentes topologias de redes e realizar tarefas de classificação no contexto do reconhecimento de padrões. Inspirados pelo clássico Life-Like CA, a rede-autômato proposta, Life-like (LLNA), ilustra como tais tarefas podem ser realizadas em aplicações mais realistas. Além disso, o modelo de rock-paper-scissors (RPS), normalmente implementado em reticulados quadrados, foi investigado usando-se redes como tesselações. Os resultados obtidos confirmam o potencial da análise quantitativa proposta dos padrões espaço-temporais para classificação de redes. Essa análise quantitativa foi realizada para um conjunto de tarefas de reconhecimento de padrões, e, para a maioria dessas tarefas, o desempenho da classificação melhorou. Além disso, a confiabilidade do LLNA como uma ferramenta genérica para reconhecimento de padrões foi demonstrada para várias tarefas de classificação de diferentes escopos. A aplicabilidade de descritores estruturais de redes também foi destacada no contexto de caracterização de formas em visão computacional. Através da abordagem proposta, a ligação entre esses descritores de rede e as propriedades da forma, como ângulo e curvatura, foi ilustrada. Além disso, quando escolhidos adequadamente, os descritores de rede levam a um melhor desempenho de classificação para diferentes tarefas de categorização de formas. No que diz respeito ao modelo RPS, demonstramos que a presença de correlações de longo alcance nas redes afeta diretamente a dinâmica do modelo. Finalmente, foi apresentado como uma rede de transporte pode ser usada para prever surtos de gripe. Todos os métodos propostos utilizam diferentes aspectos da análise de redes e contribuem para o estudo de CAs e outras SEMs em tesselações irregulares, uma vez que estes modelos são geralmente descritos em topologias regulares. Além disso, uma nova metodologia foi proposta em relação ao reconhecimento de padrões em redes através do uso de padrões espaço-temporais como descritores da rede.
|
523 |
Investigação biométrica em imagens digitais para detecção de faces humanas através da proporção divina / Biometric investigation in digital images for the detection of human faces by divine proportionPrado, Junior Leal do 23 December 2004 (has links)
O crescimento da utilização de sistemas de reconhecimento no mundo contemporâneo exige processos de detecção cada vez mais robustos e ágeis. Aplicáveis desde sistemas de teleconferência empresarial até mecanismos de segurança e vigilância, a detecção e o reconhecimento de pessoas tornaram-se uma constante. Na tentativa de buscar caminhos alternativos, tanto para os problemas de detecção, quanto para os de reconhecimento, este trabalho propõe a utilização de medidas biométricas, mensuradas em imagens digitalizadas de faces humanas. A partir do estudo de tais medidas, torna-se possível a verificação de proporções existentes na face, especialmente a proporção divina, podendo constituir, no futuro, a base para algoritmos de detecção e/ou reconhecimento que usufruam das informações trazidas por tais proporções. Diante de uma reduzida quantidade de publicações no meio científico que utilizam a proporção divina como meio de detecção e/ou reconhecimento em processamento de imagens, esta investigação vem contribuir com alguns passos nessa direção / The increase of recognition systems in the contemporary world has demanded robust and agile detection processes. From teleconference systems to security and monitoring mechanisms, the detection and recognition of people have became constantly used and applied. In attempt to search for alternative ways to solve both detection and recognition problems, this work proposes the utilization of biometric measures, taken in digital image of human faces. From the study of such measures, its possible to verify face proportions, especially the divine proportion, which could allows, in the future, to implement the detection and/or recognition algorithms that utilize such proportions. Due to small amount of scientific publications that use the divine proportion as a way of detection and/or recognition in image processing, this investigation contributes with some steps in this direction
|
524 |
Representação de sistemas biológicos a partir de sistemas dinâmicos: controle da transcrição a partir do estrógeno. / Representation of Biological Systems from Dynamical Systems: Transcription Control from EstrogenRis, Marcelo 14 April 2008 (has links)
Esta pesquisa de doutorado apresenta resultados em três áreas distintas: (i) Ciência da Computação e Estatística -- devido ao desenvolvimento de uma nova solução para o problema de seleção de características, um problema conhecido em Reconhecimento de Padrões; (ii) Bioinformática -- em razão da construção de um método baseado em um \\textit de algoritmos, incluindo o de seleção de características, visando abordar o problema de identificação de arquiteturas de redes de expressão gênica; e (iii) Biologia -- ao relacionar o estrógeno com uma nova função biológica, após analisar informações extraídas de séries temporais de \\textit pelas novas ferramentas computacionais-estatísticas desenvolvidas. O estrógeno possui um importante papel nos tecidos reprodutivos. O crescimento das gândulas mamárias e do endométrio durante a gravidez e o ciclo menstrual são estrógeno dependentes. O crescimento das células tumorais nesses órgãos podem ser estimuladas pela simples presença de estrógeno; mais de $300$ genes são conhecidos por terem regulação positiva ou negativa devido a sua presença. A motivação inicial desta pesquisa foi a construção de um método que possa servir de ferramenta para a identificação de genes que tenham seu nível de expressão alterado a partir de uma resposta induzida por estrógeno, mais precisamente, um método para modelar os inter-relacionamentos entre os diversos genes dependentes do estrógeno. Apresentamos um novo \\textit de algoritmos que, a partir de dados temporais de \\textit e um conjunto inicial de genes que compartilham algumas características comuns, denominados de \\textit{genes sementes}, devolve como saída a arquitetura de uma rede gênica representada por um grafo dirigido. Para cada nó da rede, uma tabela de predição do gene representado pelo nó em função dos seus genes preditores (genes que apontam para ele) pode ser obtida. O método foi aplicado em estudo de série-temporal de \\textit para uma cultura de células \\textit submetidas a tratamento com estrógeno, e uma possível rede de regulação foi obtida. Encontrar o melhor subconjunto preditor de genes para um dado gene pode ser estudado como um problema de seleção de características, no qual o espaço de busca pode ser representado por um reticulado Booleano e cada um de seus elementos representa um subconjunto candidato. Uma característica importante desse problema é o fato de que para cada elemento existe uma função custo associada, e esta possui forma de curva em U para qualquer cadeia maximal do reticulado. Para esse problema, apresentamos um nova solução, o algoritmo ewindex. Esse algoritmo é um método do tipo \\textit, o qual utiliza a estrutura do reticulado Booleano e a característica de curva em U da função custo para explorar um subconjunto do espaço de busca equivalente à busca completa. Nosso método obteve excelentes resultados em eficiência e valores quando comparado com as heurísticas mais utilizadas (SFFS e SFS). A partir de um método baseado no \\textit e de um conjunto inicial de genes regulados \\textit pelo estrógeno, identificamos uma evidência de envolvimento do estrógeno em um processo biológico ainda não relacionado: a adesão celular. Esse resultado pode direcionar os estudos sobre estrógeno e câncer à investigação de processo metastático, o qual é influenciado por genes relacionados à adesão celular. / This Phd. research presents in three distinct areas: (i) Computer Science and Statistics -- on the development of a new solution for the feature selection problem which is an important problem in Pattern Recognition; (ii) Bioinformatics -- for the construction of a pipeline of algorithms, including the feature selection solution, to address the problem of identification the architecture of a genetic expression network and; (iii) Biology -- relating estrogen to a new biological function, from the results obtained by the new computational-statistic tools developed and applied to a time-series microarray data. Estrogen has an important role in reproductive tissues. The growth mammary glands and endometrial growing during menstrual cycle and pregnancy are estrogen dependent. The growth of tumor cells in those organs can be stimulated by the simple presence of estrogen. Over $300$ genes are known by their positive or negative regulation by estrogen. The initial motivation of this research was the construction of a method that can serve as a tool for the identification of genes that have changed their level of expression changed by a response induced by estrogen, more specifically, a method to model the inter-relationships between the several genes dependent on estrogen. We present a new pipeline of algorithms that from the data of a time-series microarray experiment and from an initial set of genes that share some common characteristics, known as \\textit{seed genes}, gives as an output an architecture of the genetic expression network represented by a directed graph. For each node of the network, a prediction table of the gene, represented by the node, in function of its predictors genes (genes that link to it) can be obtained. The method was applied in a study of time-series microarray for a cell line \\textit submitted to a estrogen treatment and a possible regulation network was obtained. Finding the best predictor subset of genes for a given gene can be studied as a problem of feature selection where the search space can be represented by a Boolean lattice and each one of its elements represents a possible subset. An important characteristic of this problem is: for each element in the lattice there is a cost function associated to it and this function has a U-shape in any maximal chain of the search space. For this problem we present a new solution, the \\textit algorithm. This algorithm is a branch-and-bound solution which uses the structure of the Boolean lattice and U-shaped curves to explore a subset of the search space that is equivalent to the full search. Our method obtained excellent results in performance and values when compared with the most commonly used heuristics (SFFS and SFS). From a method based on the pipeline of algorithms and from an initial set of genes direct regulated by estrogen, we identified an evidence of involvement of estrogen in a biological process not yet related to estrogen: the cell adhesion. This result can guide studies on estrogen and cancer to research in metastatic process, which is affected by cell adhesion related genes.
|
525 |
Redes complexas de expressão gênica: síntese, identificação, análise e aplicações / Gene expression complex networks: synthesis, identification, analysis and applicationsLopes, Fabricio Martins 21 February 2011 (has links)
Os avanços na pesquisa em biologia molecular e bioquímica permitiram o desenvolvimento de técnicas capazes de extrair informações moleculares de milhares de genes simultaneamente, como DNA Microarrays, SAGE e, mais recentemente RNA-Seq, gerando um volume massivo de dados biológicos. O mapeamento dos níveis de transcrição dos genes em larga escala é motivado pela proposição de que o estado funcional de um organismo é amplamente determinado pela expressão de seus genes. No entanto, o grande desafio enfrentado é o pequeno número de amostras (experimentos) com enorme dimensionalidade (genes). Dessa forma, se faz necessário o desenvolvimento de novas técnicas computacionais e estatísticas que reduzam o erro de estimação intrínseco cometido na presença de um pequeno número de amostras com enorme dimensionalidade. Neste contexto, um foco importante de pesquisa é a modelagem e identificação de redes de regulação gênica (GRNs) a partir desses dados de expressão. O objetivo central nesta pesquisa é inferir como os genes estão regulados, trazendo conhecimento sobre as interações moleculares e atividades metabólicas de um organismo. Tal conhecimento é fundamental para muitas aplicações, tais como o tratamento de doenças, estratégias de intervenção terapêutica e criação de novas drogas, bem como para o planejamento de novos experimentos. Nessa direção, este trabalho apresenta algumas contribuições: (1) software de seleção de características; (2) nova abordagem para a geração de Redes Gênicas Artificiais (AGNs); (3) função critério baseada na entropia de Tsallis; (4) estratégias alternativas de busca para a inferência de GRNs: SFFS-MR e SFFS-BA; (5) investigação biológica das redes gênicas envolvidas na biossíntese de tiamina, usando a Arabidopsis thaliana como planta modelo. O software de seleção de características consiste de um ambiente de código livre, gráfico e multiplataforma para problemas de bioinformática, que disponibiliza alguns algoritmos de seleção de características, funções critério e ferramentas de visualização gráfica. Em particular, implementa um método de inferência de GRNs baseado em seleção de características. Embora existam vários métodos propostos na literatura para a modelagem e identificação de GRNs, ainda há um problema muito importante em aberto: como validar as redes identificadas por esses métodos computacionais? Este trabalho apresenta uma nova abordagem para validação de tais algoritmos, considerando três aspectos principais: (a) Modelo para geração de Redes Gênicas Artificiais (AGNs), baseada em modelos teóricos de redes complexas, os quais são usados para simular perfis temporais de expressão gênica; (b) Método computacional para identificação de redes gênicas a partir de dados temporais de expressão; e (c) Validação das redes identificadas por meio do modelo AGN. O desenvolvimento do modelo AGN permitiu a análise e investigação das características de métodos de inferência de GRNs, levando ao desenvolvimento de um estudo comparativo entre quatro métodos disponíveis na literatura. A avaliação dos métodos de inferência levou ao desenvolvimento de novas metodologias para essa tarefa: (a) uma função critério, baseada na entropia de Tsallis, com objetivo de inferir os inter-relacionamentos gênicos com maior precisão; (b) uma estratégia alternativa de busca para a inferência de GRNs, chamada SFFS-MR, a qual tenta explorar uma característica local das interdependências regulatórias dos genes, conhecida como predição intrinsecamente multivariada; e (c) uma estratégia de busca, interativa e flutuante, que baseia-se na topologia de redes scale-free, como uma característica global das GRNs, considerada como uma informação a priori, com objetivo de oferecer um método mais adequado para essa classe de problemas e, com isso, obter resultados com maior precisão. Também é objetivo deste trabalho aplicar a metodologia desenvolvida em dados biológicos, em particular na identificação de GRNs relacionadas a funções específicas de Arabidopsis thaliana. Os resultados experimentais, obtidos a partir da aplicação das metodologias propostas, mostraram que os respectivos ganhos de desempenho foram significativos e adequados para os problemas a que foram propostos. / Thanks to recent advances in molecular biology and biochemistry, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as DNA microarrays, SAGE, and more recently RNA-Seq, generating a massive volume of biological data. The mapping of gene transcription levels at large scale is motivated by the proposition that information of the functional state of an organism is broadly determined by its gene expression. However, the main limitation faced is the small number of samples (experiments) with huge dimensionalities (genes). Thus, it is necessary to develop new computational and statistics techniques to reduce the inherent estimation error committed in the presence of a small number of samples with large dimensionality. In this context, particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. The main objective of this research is to infer how genes are regulated, bringing knowledge about the molecular interactions and metabolic activities of an organism. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. In this direction, this work presents some contributions: (1) feature selection software; (2) new approach for the generation of artificial gene networks (AGN); (3) criterion function based on Tsallis entropy; (4) alternative search strategies for GRNs inference: SFFS-MR and SFFS-BA; (5) biological investigation of GRNs involved in the thiamine biosynthesis by adopting the Arabidopsis thaliana as a model plant. The feature selection software is an open-source multiplataform graphical environment for bioinformatics problems, which supports many feature selection algorithms, criterion functions and graphic visualization tools. In particular, a feature selection method for GRNs inference is also implemented in the software. Although there are several methods proposed in the literature for the modeling and identification of GRNs, an important open problem regards: how to validate such methods and its results? This work presents a new approach for validation of such algorithms by considering three main aspects: (a) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (b) computational method for GRNs identification from temporal expression data; and (c) Validation of the identified AGN-based network through comparison with the original network. Through the development of the AGN model was possible the analysis and investigation of the characteristics of GRNs inference methods, leading to the development of a comparative study of four inference methods available in literature. The evaluation of inference methods led to the development of new methodologies for this task: (a) a new criterion function based on Tsallis entropy, in order to infer the genetic inter-relationships with better precision; (b) an alternative search strategy for the GRNs inference, called SFFS-MR, which tries to exploit a local property of the regulatory gene interdependencies, which is known as intrinsically multivariate prediction; and (c) a search strategy, interactive and floating, which is based on scale-free network topology, as a global property of the GRNs, which is considered as a priori information, in order to provide a more appropriate method for this class of problems and thereby achieve results with better precision. It is also an objective of this work, to apply the developed methodology in biological data, particularly in identifying GRNs related to specific functions of the Arabidopsis thaliana. The experimental results, obtained from the application of the proposed methodologies, indicate that the respective performances of each methodology were significant and adequate to the problems that have been proposed.
|
526 |
Métodos de pré-processamento de texturas para otimizar o reconhecimento de padrões / Texture preprocessing methods to optimize pattern recognitionNeiva, Mariane Barros 19 July 2016 (has links)
A textura de uma imagem apresenta informações importantes sobre as características de um objeto. Usar essa informação para reconhecimento de padrões vem sendo uma tarefa bastante pesquisada na área de processamento de imagens e aplicado em atividades como indústria têxtil, biologia, análise de imagens médicas, imagens de satélite, análise de peças industriais, entre outros. Muitos pesquisadores focam em criar mecanismos que convertam a imagem em um vetor de características a fim de utilizar um classificador sobre esse vetores. No entanto, as imagens podem ser transformadas para que que características peculiares sejam evidenciadas fazendo com que extratores de características já existentes explorem melhor as imagens. Esse trabalho tem como objetivo estudar a influência da aplicação de métodos de pré-processamento em imagens de textura para a posterior análise das imagens. Os métodos escolhidos são seis: difusão isotrópica, difusão anisotrópica clássica, dois métodos de regularização da difusão anisotrópica, um método de difusão morfológica e a transformada de distância. Além disso, os métodos foram aliados a sete descritores já conhecidos da literatura para que as características das imagens tranformadas sejam extraídas. Resultados mostram um aumento significativo no desempenho dos classificadores KNN e Naive Bayes quando utilizados nas imagens transformadas de quatro bases de textura: Brodatz, Outex, Usptex e Vistex. / The texture of an image plays an important source of information of the image content. The use of this information to pattern recognition became very popular in image processing area and has applications such in textile industry, biology, medical image analysis, satelite images analysis, industrial equipaments analysis, among others. Many researchers focus on creating different methods to convert the input image to a feature vector to the able to classify the image based on these vectors. However, images can be modified in different ways such that important features are enhanced. Therefore, descriptors are able to extract features easily to perform a better representation of the image. This project aims to apply six different preprocessing methods to analyze their power of enhancement on the texture extraction. The methods are: isotropic diffusion, the classic anisotropic diffusion, two regularizations of the anisotropic diffusion, a morphologic diffusion and the distance transform. To extract the features of these modified images, seven texture analysis algorithms are used along KNN and Naive Bayes to classify the textures. Results show a significant increase when datasets Brodatz, Vistex, Usptex and Outex are transformed prior to texture analysis and classification.
|
527 |
Estudo de representações multidimensionais para segmentação das fases do gesto / Study of multidimensional representations for the gesture phases segmentationFeitosa, Ricardo Alves 17 April 2018 (has links)
Sistemas de análise de gestos têm se destacado por suas contribuições para a interação entre humanos, humanos e máquinas, e humanos e ambiente. Nessa interação, a gesticulação natural é vista como parte do sistema linguístico que suporta a comunicação, e qualquer sistema de informação que objetiva usar interação para suporte à decisão deveria ser capaz de interpretá-la. Essa interpretação pode ser realizada por meio da segmentação das fases do gesto. Para resolver essa tarefa, o estabelecimento de uma representação de dados eficiente para os gestos é um ponto crítico. A representação escolhida e sua associação a técnicas de análise podem ou não favorecer a solução sob implementação. Neste trabalho, formas de representação de gestos são submetidas aos algoritmos de reconhecimento de padrões MLP e SOM para elaborar um ambiente propício à identificação das representações mais discriminantes, quais aspectos as diferentes representações descrevem com eficiência, e como elas podem ser combinadas para melhorar a segmentação das fases do gesto. Para construção das representações multidimensionais são usados aspectos espaciais e temporais combinados com a normalização dos dados e a aplicação do filtro wavelet na busca pela representação mais discriminante para o reconhecimento das fases do gesto. Ambos os algoritmos alcançaram bons resultados com o uso dos aspectos temporais. O MLP conseguiu classificar todas as fases do gesto em configurações de representação contendo dados sobre todos os membros monitorados. O SOM apresentou boa capacidade para formar grupos contendo dados de uma mesma fase do gesto mesmo com o uso de poucas características na construção da representação, porém não foi possível identificar a proposta de uma nova fase do gesto com o aprendizado não supervisionado / Gestures analysis systems have stood out for their contributions to the interaction between humans, humans and machines, and humans and environments. In this interaction, natural gesticulation is seen as part of a linguistic system that supports the communication, and all information systems aiming at the use of such an interaction in making decisions should be able to interpret it. Such an interpretation can be carried out through the gesture phases segmentation. In order to solve this task, the establishment of an efficient data representation for gestures is a critical issue. The chosen representation as well as its combination with techniques for analysis can or can not favor the solution being developed. In this work, different forms representation for gestures are applied to pattern recognition algorithms MLP and SOM to create an adequate environment to identify the more discriminative representations, which aspect the different representations describe with more efficiency, and how they can be combined in order to improve gesture phases segmentation. To construct the multidimensional representations we use spatial and temporal aspects combined with the normalization of the data and the application of the wavelet filter in the search for the most discriminating representation for the recognition of the gesture phases. Both algorithms achieved good results with the use of temporal aspects. MLP was able to classify all gesture phases using representation settings containing data about all monitored members. SOM presented good ability to form groups containing data of the same gesture phase even with the use of few characteristics in the construction of the representation, but it was not possible to identify the proposal of a new gesture phase with unsupervised learning
|
528 |
Métodos de validação tradicional e temporal aplicados à avaliação de classificadores de RNAs codificantes e não codificantes / Traditional and time validation methods applied to the evaluation of coding and non-coding RNA classifiersSá, Clebiano da Costa 23 March 2018 (has links)
Os ácidos ribonucleicos (RNAs) podem ser classificados em duas classes principais: codificante e não codificante de proteína. Os codificantes, representados pelos RNAs mensageiros (mRNAs), possuem a informação necessária à síntese proteica. Já os RNAs não codificantes (ncRNAs) não são traduzidos em proteínas, mas estão envolvidos em várias atividades celulares distintas e associados a várias doenças tais como cardiopatias, câncer e desordens psiquiátricas. A descoberta de novos ncRNAs e seus papéis moleculares favorece avanços no conhecimento da biologia molecular e pode também impulsionar o desenvolvimento de novas terapias contra doenças. A identificação de ncRNAs é uma ativa área de pesquisa e um dos correntes métodos é a classificação de sequências transcritas utilizando sistemas de reconhecimento de padrões baseados em suas características. Muitos classificadores têm sido desenvolvidos com este propósito, especialmente nos últimos três anos. Um exemplo é o Coding Potential Calculator (CPC), baseado em Máquinas de Vetores de Suporte (SVM). No entanto, outros algoritmos robustos são também reconhecidos pelo seu potencial em tarefas de classificação, como por exemplo Random Forest (RF). O método mais utilizado para avaliação destas ferramentas tem sido a validação cruzada k-fold. Uma questão não considerada nessa forma de validação é a suposição de que as distribuições de frequências dentro do banco de dados, em termos das classes das sequências e outras variáveis, não se alteram ao longo do tempo. Caso essa premissa não seja verdadeira, métodos tradicionais como a validação cruzada e o hold-out podem subestimar os erros de classificação. Constata-se, portanto, a necessidade de um método de validação que leve em consideração a constante evolução dos bancos de dados ao longo do tempo, para proporcionar uma análise de desempenho mais realista destes classificadores. Neste trabalho comparamos dois métodos de avaliação de classificadores: hold-out temporal e hold-out tradicional (atemporal). Além disso, testamos novos modelos de classificação a partir da combinação de diferentes algoritmos de indução com características de classificadores do estado da arte e um novo conjunto de características. A partir dos testes das hipóteses, observamos que tanto a validação hold-out tradicional quanto a validação hold-out temporal tendem a subestimar os erros de classificação, que a avaliação por validação temporal é mais fidedigna, que classificadores treinados a partir de parâmetros calibrados por validação temporal não melhoram a classificação e que nosso modelo de classificação baseado em Random Forest e treinado com características de classificadores do estado da arte e mais um novo conjunto de características proporcionou uma melhora significativa na discriminação dos RNAs codificantes e não codificantes. Por fim, destacamos o potencial do algoritmo Random Forest e das características utilizadas, diante deste problema de classificação, e sugerimos o uso do método de validação hold-out temporal para a obtenção de estimativas de desempenho mais fidedignas para os classificadores de RNAs codificantes e não codificantes de proteína. / Ribonucleic acids (RNAs) can be classified into two main classes: coding and non-coding of protein. The coding, represented by messenger RNAs (mRNAs), has the necessary information for protein synthesis. Non-coding RNAs (ncRNAs) are not translated into proteins but are involved in several distinct cellular activities associated with various diseases such as heart disease, cancer and psychiatric disorders. The discovery of new ncRNAs and their molecular roles favors advances in the knowledge of molecular biology and may also boost the development of new therapies against diseases. The identification of ncRNAs is an active area of research and one of the current methods is the classification of transcribed sequences using pattern recognition systems based on their characteristics. Many classifiers have been developed for this purpose, especially in the last three years. An example is the Coding Potential Calculator (CPC), based on Supporting Vector Machines (SVM). However, other robust algorithms are also recognized for their potential in classification tasks, such as Random Forest (RF). The most commonly used method for evaluating these tools has been cross-validation k-fold. An issue not considered in this form of validation is the assumption that frequency distributions within the database, in terms of sequence classes and other variables, do not change over time. If this assumption is not true, traditional methods such as cross-validation and hold-out may underestimate classification errors. The need for a validation method that takes into account the constant evolution of databases over time is therefore needed to provide a more realistic performance analysis of these classifiers. In this work we compare two methods of evaluation of classifiers: time hold-out and traditional hold-out (without considering the time). In addition, we tested new classification models from the combination of different induction algorithms with state-ofthe-art classifier characteristics and a new set of characteristics. From the hypothesis tests, we observe that both the traditional hold-out validation and the time hold-out validation tend to underestimate the classification errors, that the time validation evaluation is more reliable, than classifiers trained from parameters calibrated by time validation did not improve classification and that our Random Forest-based classification model trained with state-of-the-art classifier characteristics and a new set of characteristics provided a significant improvement in the discrimination of the coding and non-coding RNAs. Finally, we highlight the potential of the Random Forest algorithm and the characteristics used, in view of this classification problem, and we suggest the use of the time hold-out validation method to obtain more reliable estimates of the protein coding and non-coding RNA classifiers.
|
529 |
Desenvolvimento do protótipo de uma prótese antropomórfica para membros superiores / Development of an anthropomorphic prosthesis prototype for superior membersCamargo, Daniel Rodrigues de 11 August 2008 (has links)
A finalidade desse trabalho é desenvolver um protótipo de uma prótese antropomórfica multifuncional para membros superiores para pacientes amputados. Seu objetivo é substituir a mão natural perdida, de forma a auxiliar a realização de algumas tarefas diárias do usuário. A prótese possuirá características antropomórficas, tais como aparência e movimentação semelhantes às da mão humana, e características naturais inerentes à mesma, por exemplo, o arco reflexo. Além disso, contará também com meios de realimentação táteis das informações de forças aplicadas pela prótese em objetos, bem como sua temperatura para o paciente, suprindo assim uma das carências das próteses convencionais. Esse dispositivo terá incorporado na sua construção sensores diversos para realizar as funções propostas e contará com um algoritmo baseado em redes neurais artificiais, capaz de identificar padrões dos sinais mioelétricos do paciente, que serão utilizados como sinais de controle, possibilitando ao paciente um comando natural. Todas essas implementações visam contribuir para a redução da taxa de rejeição de próteses para membros superiores e possibilitar uma maior reabilitação e reintegração do paciente à sociedade. / The purpose of this assignment is to develop a multifunctional and anthropomorphic upper limb prosthesis prototype for amputated patients. Its objective is to substitute the natural lost hand, in a way to improve the performance of regular activities. This prosthesis will have anthropomorphic characteristics, like appearance and movement, similar to the ones of the human hand, and natural characteristics inherent to it, for example the reflected arc. Another characteristic will be the tactile feedback ways of obtaining the information of the forces applied by the prosthesis in objects, as well as their temperature for the patient, overcoming therefore one of the traditional prosthesis\' deficiency. This device will have incorporated in its construction many sensors in order to do the proposed functions and it will use an algorithm based on the artificial neural network that is able to recognize patterns of myoelectric signals of the patient, which will be used as control signals, making possible to the patient a natural command. All of these implementations objective to contribute for the reduction of the rejection rate of prostheses for upper limb members and make possible a better rehabilitation and reintegration of the patient in the society.
|
530 |
Caracterização de imagens de úlceras dermatológicas para indexação e recuperação por conteúdo / Characterization of dermatological ulcers images for indexing and content-based retrievalPereira, Silvio Moreto 01 November 2012 (has links)
Úlceras de pele são causadas devido à deficiência na circulação sanguínea. O diagnóstico é feito pela análise visual das regiões afetadas. A quantificação da distribuição de cores da lesão, por meio de técnicas de processamento de imagens pode auxiliar na caracterização e análise da dinâmica do processo patológico e resposta ao tratamento. O processamento de imagens de úlceras dermatológicas envolve etapas relacionadas a segmentação, caracterização e indexação. Esta análise é importante para classificação, recuperação de imagens similares e acompanhamento da evolução de uma lesão. Este trabalho apresenta um estudo sobre técnicas de segmentação e caracterização de imagens coloridas de úlceras de pele, baseadas nos modelos de cores RGB, HSV, L*a*b* e L*u*v*, utilizando suas componentes na extração de informações de textura e cor. Foram utilizadas técnicas de Aprendizado de Máquina e algoritmos matemáticos para a segmentação e extração de atributos, utilizando uma base de dados com 172 imagens. Nos testes de recuperação, foram utilizadas diferentes métricas de distância para avaliação do desempenho e técnicas de seleção de atributos. Os resultados obtidos evidenciam bom potencial para apoio ao diagnóstico e acompanhamento da evolução do tratamento com valores de até 75% de precisão para as técnicas de recuperação, 0,9 de área embaixo da curva receiver-operating-characteristic na classificação e 0,04 de erro médio quadrático entre a composição de cores da imagem segmentada automaticamente e a segmentada manualmente. Nos testes utilizando seleção de atributos, foi observado uma redução nos valores de precisão de recuperação (60%) e valores similares nos tetes de classificação (0,85). / Skin ulcers are caused due to deficiency in the bloodstream. The diagnosis is made by a visual analysis of the affected area. Quantification of color distribution of the lesion by image processing techniques can aid in the characterization and response to treatment. The image processing steps involves skin ulcers related to segmentation, characterization and indexing. This analysis is important for classification, image retrieval and similar tracking the evolution of an injury. This project presents a study of segmentation techniques and characterization of color images of dermatological skin ulcers, based on the color models RGB, HSV, L*a*b* and L*u*v*, using their components in the extraction of texture and color information. Were used Machine Learning techniques, mathematical algorithms for segmentation and extraction of attributes, using a database containing 172 images in two versions. In recovery tests were used different distance metrics for performance evaluation and techniques of features selection. The results show good potential to support the diagnosis and monitoring of treatment progress with values up to 75% precision in recovery techniques, 0.9 area under the curve receiver-operating-characteristic) in classification, and 0.04 mean square error between the color composition of the automatically segmented image and the manually segmented image. In tests utilizing feature selection was observed a decrease in precision values of image retrieval (60%) and similar values in the classification\'s tests (0.85).
|
Page generated in 0.0749 seconds