• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impression de silicium par procédé jet d'encre : des nanoparticules aux couches minces fonctionnelles pour applications photovoltaïques

Drahi, Etienne 21 March 2013 (has links) (PDF)
Cette étude prend place dans le cadre du projet ANR Inxilicium visant à la réalisation de cellules solaires en couches minces de silicium par jet d'encre. Les nanoparticules de silicium sont des matériaux à fort potentiel pour la levée de verrous technologiques grâce à leurs propriétés spécifiques. Des encres de nanoparticules de Si issues de diverses méthodes de synthèse ont été imprimées par jet d'encre sur différents substrats : quartz, électrodes métalliques (aluminium, molybdène) et transparente conductrice (ZnO:Al). L'optimisation du procédé d'impression, de l'interaction encre/substrat (via la modulation de l'énergie de surface des substrats) et de l'étape de séchage a permis l'obtention de couches minces homogènes et continues (plusieurs centaines de nm à quelques µm d'épaisseur)A posteriori, une étape de recuit est nécessaire pour recouvrer des propriétés fonctionnelles. L'utilisation de nanoparticules à la physico-chimie de surface contrôlée fait décroître les températures de frittage de 1100 °C à environ 600 °C. En complément, des recuits sélectifs (micro-ondes et photonique) ont été évalués pour leur application sur des substrats flexibles et bas coûts.Les propriétés optiques et les interfaces électrode/silicium ont été examinées afin d'intégrer ces couches dans des dispositifs (cellule solaire...). La formation de transitions métallurgiques Al-Si et Mo-Si a été étudiées par DRX-in situ. L'ensemble de ces travaux a permis la réalisation d'une jonction PN montrant un comportement photovoltaïque à fort champ grâce aussi à la mise au point d'une méthode innovante de collage ouvrant la voie à une réduction du bilan thermique des procédés de fabrication.
2

Microstructuring inkjet-printed deposits from silver nanoparticules coalescence to the fabrication of interconnections for electronic devices. / Microstructuration des dépôts imprimés par jet d'encre de la coalescence des nanoparticules d'argent vers la réalisation d'interconnexions de composants électroniques.

Cauchois, Romain 07 February 2012 (has links)
Plusieurs défis subsistent pour la migration de l’électronique imprimée vers l’industrie, malgré des avancées récentes. Dans ces travaux de thèse, l’optimisation du procédé d’impression d’encres à base de nanoparticules d’argent (<Ø>=25 nm) en fonction de sa rhéologie et des interactions fluide/substrat a permis de réaliser des interconnexions électriques d’une épaisseur de 500 nm. Ces lignes imprimées sur des substrats silicium ou flexibles sont ensuite recuites par des méthodes conventionnelles (étuve ou infrarouge) ou sélectives (micro-onde) à des températures comprises entre 100 et 300°C.Une meilleure compréhension de la relation procédé/microstructure des couches minces imprimées, via plusieurs caractérisations cristallographiques (DRX, EBSD et EDX), a permis d’optimiser la croissance des domaines nanocristallins, activée pour des énergies de l’ordre de 3 à 5 kJ•mol-1. Outre les faibles contraintes résiduelles (70 MPa), cette optimisation permet d’atteindre de faibles résistivités électriques (3.4 µOhm•cm) associées à un accroissement de la cohérence des réseaux cristallins aux joints de grains. La probabilité de réflexion des électrons à ces interfaces peut être davantage réduite, grâce à une approche innovante de croissance orientée des cristallites par interdiffusion atomique à partir du substrat.La faible rigidité mécanique (E<50 GPa) de ces lignes initialement poreuses nécessite une étape de renforcement par texturation ou par croissance electroless pour résister aux étapes de micro-assemblage et de soudure filaire. La réalisation d’un démonstrateur fonctionnel a ainsi permis de valider la technologie d’impression pour la fabrication de composants électroniques. / Several challenges are still holding back the technological transfer of printed electronics to industry in spite of recent progresses. In this thesis work, the printing method of inks based on silver nanoparticles (<Ø>=25 nm) was optimized according to its rheology and to the fluid/substrate interactions for the fabrication of electrical interconnections with a thickness of 500 nm. These lines were printed on silicon or flexible substrates and annealed either by conventional (oven or infrared) or selective methods (microwave) at temperatures comprised between 100 and 300 °C.A better understanding of the relationship between process and microstructure of these printed thin films, based on several crystallographic equipments (XRD, EBSD and EDX), led to the optimization of nanocrystallites growth with an activation energy of about 3 to 5 kJ•mol-1. In addition to the low residual stress (70 MPa), this optimization is used to achieve low electrical resistivity (3.4 μOhm•cm) associated with a greater coherence of the crystal lattices at grain boundaries. The probability of electron scattering at such interfaces can be further reduced using an innovative approach of oriented crystallite growth by atomic interdiffusion from the substrate.The low mechanical stiffness (E<50 GPa) of these porous lines requires a reinforcement step either by crystalline texturation or by electroless growth to withstand the assembly and wire-bonding steps. The fabrication of a functional demonstrator thus validated the printing technology for the manufacture of electronic components.
3

Impression de silicium par procédé jet d’encre : des nanoparticules aux couches minces fonctionnelles pour applications photovoltaïques / Inkjet-printed silicon : from nanoparticles to functional thin-films for photovoltaic applications

Drahi, Etienne 21 March 2013 (has links)
Cette étude prend place dans le cadre du projet ANR Inxilicium visant à la réalisation de cellules solaires en couches minces de silicium par jet d’encre. Les nanoparticules de silicium sont des matériaux à fort potentiel pour la levée de verrous technologiques grâce à leurs propriétés spécifiques. Des encres de nanoparticules de Si issues de diverses méthodes de synthèse ont été imprimées par jet d’encre sur différents substrats : quartz, électrodes métalliques (aluminium, molybdène) et transparente conductrice (ZnO:Al). L’optimisation du procédé d’impression, de l’interaction encre/substrat (via la modulation de l’énergie de surface des substrats) et de l’étape de séchage a permis l’obtention de couches minces homogènes et continues (plusieurs centaines de nm à quelques µm d’épaisseur)A posteriori, une étape de recuit est nécessaire pour recouvrer des propriétés fonctionnelles. L’utilisation de nanoparticules à la physico-chimie de surface contrôlée fait décroître les températures de frittage de 1100 °C à environ 600 °C. En complément, des recuits sélectifs (micro-ondes et photonique) ont été évalués pour leur application sur des substrats flexibles et bas coûts.Les propriétés optiques et les interfaces électrode/silicium ont été examinées afin d’intégrer ces couches dans des dispositifs (cellule solaire…). La formation de transitions métallurgiques Al-Si et Mo-Si a été étudiées par DRX-in situ. L’ensemble de ces travaux a permis la réalisation d’une jonction PN montrant un comportement photovoltaïque à fort champ grâce aussi à la mise au point d’une méthode innovante de collage ouvrant la voie à une réduction du bilan thermique des procédés de fabrication. / This study takes place in the frame of the Inxilicium project from the National Research Agency, which targets the fabrication of silicon thin film solar cells by inkjet-printing. Thanks to their specific properties, silicon nanoparticles are materials with strong potential for technological breakthroughs. Silicon nanoparticle-based inks made by different synthesis routes have been inkjet-printed on different substrates: quartz, metallic electrodes (aluminum, molybdenum) and transparent electrodes (ZnO:Al). Homogeneous and continuous thin films (from several hundreds of nm to some µm thick) have been obtained through optimization of the printing process, the ink/substrate interaction (via substrates surface energy tuning) and the drying step.A posteriori, an annealing step is mandatory for recovering of functional properties. By using nanoparticles with tailored surface physical chemistry, the sintering temperature decreases from 1100 °C to 600 °C. In order to allow the use of this material on flexible and low cost substrates, selective sintering (microwave and photonics) have been also evaluated.Thin film optical properties and electrode/silicon interfaces have been investigated with the purpose to integrate those layers into devices (solar cells…). Metallurgical evolution of Al-Si and Mo-Si physical interfaces has been studied by in situ XRD.This work allowed the fabrication of a PN junction with a photovoltaic behaviour under strong polarization voltage thanks to the development of an innovative thermal pasting process, which opens the way to the reduction of process thermal budget.

Page generated in 0.0536 seconds