• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 11
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Evaluating Time-varying Effect in Single-type and Multi-type Semi-parametric Recurrent Event Models

Chen, Chen 11 December 2015 (has links)
This dissertation aims to develop statistical methodologies for estimating the effects of time-fixed and time-varying factors in recurrent events modeling context. The research is motivated by the traffic safety research question of evaluating the influence of crash on driving risk and driver behavior. The methodologies developed, however, are general and can be applied to other fields. Four alternative approaches based on various data settings are elaborated and applied to 100-Car Naturalistic Driving Study in the following Chapters. Chapter 1 provides a general introduction and background of each method, with a sketch of 100-Car Naturalistic Driving Study. In Chapter 2, I assessed the impact of crash on driving behavior by comparing the frequency of distraction events in per-defined windows. A count-based approach based on mixed-effect binomial regression models was used. In Chapter 3, I introduced intensity-based recurrent event models by treating number of Safety Critical Incidents and Near Crash over time as a counting process. Recurrent event models fit the natural generation scheme of the data in this study. Four semi-parametric models are explored: Andersen-Gill model, Andersen-Gill model with stratified baseline functions, frailty model, and frailty model with stratified baseline functions. I derived model estimation procedure and and conducted model comparison via simulation and application. The recurrent event models in Chapter 3 are all based on proportional assumption, where effects are constant. However, the change of effects over time is often of primary interest. In Chapter 4, I developed time-varying coefficient model using penalized B-spline function to approximate varying coefficients. Shared frailty terms was used to incorporate correlation within subjects. Inference and statistical test are also provided. Frailty representation was proposed to link time-varying coefficient model with regular frailty model. In Chapter 5, I further extended framework to accommodate multi-type recurrent events with time-varying coefficient. Two types of recurrent-event models were developed. These models incorporate correlation among intensity functions from different type of events by correlated frailty terms. Chapter 6 gives a general review on the contributions of this dissertation and discussion of future research directions. / Ph. D.
12

以重複事件分析法分析信用評等 / Recurrent Event Analysis of Credit Rating

陳奕如, Chen, Yi Ru Unknown Date (has links)
This thesis surveys the method of extending Cox proportional hazard models (1972) and the general class of semiparametric model (2004) in the upgrades or downgrades of credit ratings by S&P. The two kinds of models can be used to modify the relationship of covariates to a recurrent event data of upgrades or downgrades. The benchmark credit-scoring model with a quintet of financial ratios which is inspired by the Z-Score model is employed. These financial ratios include measures of short-term liquidity, leverage, sales efficiency, historical profitability and productivity. The evidences of empirical results show that the financial ratios of historical profitability, leverage, and sales efficiency are significant factors on the rating transitions of upgrades. For the downgrades data setting, the financial ratios of short-term liquidity, productivity, and leverage are significant factors in the extending Cox models, whereas only the historical profitability is significant in the general class of semiparametric model. The empirical analysis of S&P credit ratings provide evidence supporting that the transitions of credit ratings are related to some determined financial ratios under these new econometrics methods.
13

Contributions à la prévision court-terme, multi-échelle et multi-variée, par apprentissage statistique du trafic routier / Contributions to the short-term, multi-variate and multi-scale prediction of traffic states based on machine learning methods

Laharotte, Pierre-Antoine 16 December 2016 (has links)
La maturité de la télématique et des technologies de l’information et la communication (TIC), ainsi que l’avènement du big data dans le transport ont conduit à des développements foisonnants dans le domaine des systèmes de transports intelligents (ITS), aussi bien sur le plan des technologies de recueil que du traitement innovant de l’information. Il est désormais possible de connaître les conditions de circulation et les états de trafic sur la plupart des sections d’un réseau routier sans avoir recours à des infrastructures intrusives de collecte de données, de transmettre l’information résultante via des réseaux sans fil et de traiter rapidement toutes ces données multi-sources disponibles. La constitution de grandes bases de données a naturellement fait évoluer la pratique de gestion du trafic et plus particulièrement les méthodes de prévision. Ces méthodes ont connu un renouveau en s’inspirant des travaux produits en apprentissage statistique. Néanmoins, la façon d’appréhender le problème de la prévision est restée à une échelle locale. Pour chaque section de route, un modèle de prévision est adapté et optimisé. Notre travail de thèse présente un cadre de prévision du trafic routier qui aborde la question à l’échelle du réseau. L’étude menée au sein de ces travaux de thèse vise à exposer et évaluer cette nouvelle approche, dite globale, au regard d’approches usuelles, puis à analyser sa sensibilité vis-à-vis de divers facteurs. Après un positionnement par rapport à l’état de l’art en théorie du trafic, le cadre prédictif fondé sur des méthodes de prévision multi-variées par apprentissage est détaillé. Une version multidimensionnelle des k plus proches voisins, modèle parcimonieux et simple, est évaluée sur divers cas d’études. L’originalité réside dans l’exploitation de données issues de méthodes innovantes de collecte (e.g. Bluetooth, véhicules traceurs, véhicules connectés). Par la suite, les performances de l’approche initiale sont comparées à d’autres méthodes d’apprentissage. Un effort particulier est porté sur l’adaptation de méthodes à noyaux au cadre prédictif global. Les performances obtenues laissent entrevoir une typologie des méthodes en fonction des caractéristiques spatiotemporelles du réseau. Afin d’améliorer les performances en prévision et de réduire les temps de calcul, une méthode d’identification et de sélection des sections critiques du réseau est proposée. Les résultats prouvent qu’un sous-ensemble restreint de sections est en effet suffisant pour garantir des performances satisfaisantes en généralisation. Enfin, la résilience du cadre prédictif est évaluée au regard des événements non récurrents affectant le fonctionnement nominal du réseau, comme des incidents ou des conditions météorologiques dégradées. Les résultats soulignent l’impact de ces conditions non récurrentes sur la prévision temps-réel de la dynamique court-terme d’un réseau et permettent de dresser une feuille de route pour l’élaboration d’un cadre prédictif résilient et opérationnel. Cette nouvelle vision de la prévision s’inscrit dans les perspectives actuelles en termes d’applications sur les modules embarqués et les objectifs des gestionnaires d’infrastructures. / The maturity of information and communication technologies and the advent of Big Data have led to substantial developments in intelligent transportation systems (ITS) : from data collection to innovative processing solutions. Knowledge of current traffic states is available over most of the network range without the use of intrusive infrastructure-side collection devices, instead relying on wireless transmission of multi-source data. The increasing use of huge databases had a strong influence on traffic management, including forecasting methods. These approaches followed the recent trend towards innovative works on statistical learning. However, the prediction problem remains mainly focused on the local scale. The prediction for each road link relies on a dedicated, optimized and adapted prediction model. Our work introduces a traffic-forecasting framework able to tackle network scale problems. The study conducted in this thesis aims to present and evaluate this new “global” approach, in comparison to most-used existing works, and then to analyze its sensitivity to several factors. The traffic-forecasting framework, based on multi-variate learning methods, is detailed after a review of the literature on traffic flow theory. A multi-dimensional version of the k nearest-neighbors, a simple and sparse model, is evaluated through several use cases. The originality of the work stands on the processing approach, applied to data collected through new measurement process (e.g. Bluetooth, floating car data, connected vehicles). Then, the performance of our primary approach is compared to other learning-based methods. We propose an adaptation of kernel-based methods for the global prediction framework. The obtained results show that global approaches perform as well as usual approaches. The spatial and temporal specificities of the methods are highlighted according to the prediction accuracy. To improve the forecasting accuracy and reduce the computation time, we propose an identification and selection method targeting critical links. The results demonstrate that the use of a restricted subset of links is sufficient to ensure acceptable performances during validation tests. Finally, the prediction framework resilience is evaluated with respect to non-recurrent events as incidents or adverse weather conditions affecting the nominal network operations. The results highlight the impact of these non-recurrent conditions on real-time forecasting of short-term network dynamics. This enables the design of a further operational and resilient prediction framework. This perspective of forecasting matches the current applications relying on embedded systems and addressing the traffic network supervisor’s expectations.
14

Consideration of multiple events for the analysis and prediction of a cancer evolution / Prise en compte d'événements multiples pour analyser et prédire l'évolution d'un cancer

Krol, Agnieszka 23 November 2016 (has links)
Le nombre croissant d’essais cliniques pour le traitement du cancer a conduit à la standardisation de l’évaluation de la réponse tumorale. Dans les essais cliniques de phase III des cancers avancés, la survie sans progression est souvent appliquée comme un critère de substitution pour la survie globale. Pour les tumeurs solides, la progression est généralement définie par les critères RECIST qui utilisent l’information sur le changement de taille des lésions cibles et les progressions de la maladie non-cible. Malgré leurs limites, les critères RECIST restent l’outil standard pour l’évaluation des traitements. En particulier, la taille tumorale mesurée au cours de temps est utilisée comme variable ponctuelle catégorisée pour identifier l’état d’un patient. L’approche statistique de la modélisation conjointe permet une analyse plus précise des marqueurs de réponse tumorale et de la survie. En outre, les modèles conjoints sont utiles pour les prédictions dynamiques individuelles. Dans ce travail, nous avons proposé d’appliquer un modèle conjoint trivarié pour des données longitudinales (taille tumorale), des évènements récurrents (les progressions de la maladie non-cible) et la survie. En utilisant des mesures de capacité prédictive, nous avons comparé le modèle proposé avec un modèle pour les progressions tumorales, définies selon les critères standards et la survie. Pour un essai clinique randomisé porté sur le cancer colorectal, nous avons trouvé une meilleure capacité prédictive du modèle proposé. Dans la deuxième partie, nous avons développé un logiciel en libre accès pour l’application de l’approche de modélisation conjointe proposée et les prédictions. Enfin, nous avons étendu le modèle à une analyse plus sophistiquée de l’évolution tumorale à l’aide d’un modèle mécaniste. Une équation différentielle ordinaire a été mise en œuvre pour décrire la trajectoire du marqueur biologique en tenant compte les caractéristiques biologiques de la croissance tumorale. Cette nouvelle approche contribue à la recherche clinique sur l’évaluation d’un traitement dans les essais cliniques grâce à une meilleure compréhension de la relation entre la réponse tumorale et la survie. / The increasing number of clinical trials for cancer treatments has led to standardization of guidelines for evaluation of tumor response. In phase III clinical trials of advanced cancer, progression-free survival is often applied as a surrogate endpoint for overall survival (OS). For solid tumors, progression is usually defined using the RECIST criteria that use information on the change of size of target lesions and progressions of non-target disease. The criteria remain the standard tool for treatment evaluation despite their limitations. In particular, repeatedly measured tumor size is used as a pointwise categorized variable to identify a patient’s status. Statistical approach of joint modeling allows for more accurate analysis of the tumor response markers and survival. Moreover, joint models are useful for individual dynamic predictions of death using patient’s history. In this work, we proposed to apply a trivariate joint model for a longitudinal outcome (tumor size), recurrent events (progressions of non-target disease) and survival. Using adapted measures of predictive accuracy we compared the proposed joint model with a model that considered tumor progressions defined within standard criteria and OS. For a randomized clinical trial for colorectal cancer patients, we found better predictive accuracy of the proposed joint model. In the second part, we developed freely available software for application of the proposed joint modeling and dynamic predictions approach. Finally, we extended the model to a more sophisticated analysis of tumor size evolution using a mechanistic model. An ordinary differential equation was implemented to describe the trajectory of the biomarker regarding the biological characteristics of tumor size under a treatment. This new approach contributes to clinical research on treatment evaluation in clinical trials by better understanding of the relationship between the markers of tumor response with OS.
15

Prognosis of cancer patients : input of standard and joint frailty models / Pronostic en cancérologie : apport des modèles à fragilité standards et conjoints

Mauguen, Audrey 28 November 2014 (has links)
La recherche sur le traitement des cancers a évolué durant les dernières années principalement dans une direction: la médecine personnalisée. Idéalement, le choix du traitement doit être basé sur les caractéristiques dupatient et de sa tumeur. Cet objectif nécessite des développements biostatistiques, pour pouvoir évaluer lesmodèles pronostiques, et in fine proposer le meilleur. Dans une première partie, nous considérons le problèmede l’évaluation d’un score pronostique dans le cadre de données multicentriques. Nous étendons deux mesuresde concordance aux données groupées analysées par un modèle à fragilité partagée. Les deux niveaux inter etintra-groupe sont étudiés, et l’impact du nombre et de la taille des groupes sur les performances des mesuresest analysé. Dans une deuxième partie, nous proposons d’améliorer la prédiction du risque de décès en tenantcompte des rechutes précédemment observées. Pour cela nous développons une prédiction issue d’un modèleconjoint pour un événement récurrent et un événement terminal. Les prédictions individuelles proposées sontdynamiques, dans le sens où le temps et la fenêtre de prédiction peuvent varier, afin de pouvoir mettre à jourla prédiction lors de la survenue de nouveaux événements. Les prédictions sont développées sur une série hospitalièrefrançaise, et une validation externe est faite sur des données de population générale issues de registres decancer anglais et néerlandais. Leurs performances sont comparées à celles d’une prédiction issue d’une approchelandmark. Dans une troisième partie, nous explorons l’utilisation de la prédiction proposée pour diminuer ladurée des essais cliniques. Les temps de décès non observés des derniers patients inclus sont imputés en utilisantl’information des patients ayant un suivi plus long. Nous comparons trois méthodes d’imputation : un tempsde survie moyen, un temps échantillonné dans une distribution paramétrique et un temps échantillonné dansune distribution non-paramétrique des temps de survie. Les méthodes sont comparées en termes d’estimationdes paramètres (coefficient et écart-type), de risque de première espèce et de puissance. / Research on cancer treatment has been evolving for last years in one main direction: personalised medicine. Thetreatment choice must be done according to the patients’ and tumours’ characteristics. This goal requires somebiostatistical developments, in order to assess prognostic models and eventually propose the best one. In a firstpart, we consider the problem of assessing a prognostic score when multicentre data are used. We extended twoconcordance measures to clustered data in the context of shared frailty model. Both the between-cluster andthe within-cluster levels are studied, and the impact of the cluster number and size on the performance of themeasures is investigated. In a second part, we propose to improve the prediction of the risk of death accountingfor the previous observed relapses. For that, we develop predictions from a joint model for a recurrent event anda terminal event. The proposed individual prediction is dynamic, both the time and the horizon of predictioncan evolve, so that the prediction can be updated at each new event time. The prediction is developed ona French hospital series, and externally validated on population-based data from English and Dutch cancerregistries. Its performances are compared to those of a landmarking approach. In a third part, we explore theuse of the proposed prediction to reduce the clinical trial duration. The non-observed death times of the lastincluded patients are imputed using the information of the patients with longer follow-up. We compared threemethods to impute the data: a survival mean time, a time sampled from the parametric distribution and atime sampled from a non-parametric distribution of the survival times. The comparison is made in terms ofparameters estimation (coefficient and standard-error), type-I error and power.

Page generated in 0.0958 seconds