• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 14
  • 13
  • 12
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 175
  • 175
  • 175
  • 92
  • 60
  • 57
  • 55
  • 49
  • 34
  • 33
  • 32
  • 29
  • 28
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Explainable AI - Visualization of Neuron Functionality in Recurrent Neural Networks for Text Prediction / Förklarande AI - Visualisering av Neuronfunktionalitet i Rekurrenta Neurala Nätverk för Textprediktering

Dahlberg, John January 2019 (has links)
Artificial Neural Networks are successfully solving a wide range of problems with impressive performance. Nevertheless, often very little or nothing is understood in the workings behind these black-box solutions as they are hard to interpret, let alone to explain. This thesis proposes a set of complementary interpretable visualization models of neural activity, developed through prototyping, to answer the research question ”How may neural activity of Recurrent Neural Networks for text sequence prediction be represented, transformed and visualized during the inference process to explain interpretable functionality with respect to the text domain of some individual hidden neurons, as well as automatically detect these?”. Specifically, a Vanilla and a Long Short-Term Memory architecture are utilized for character respectively word prediction as testbeds. The research method is experimental; causalities between text features triggering neurons and detected patterns of corresponding nerve impulses are investigated. The result reveals not only that there exist neurons with clear and consistent feature-specific patterns of activity, but also that the proposed models of visualization successfully may automatically detect and interpretably present some of these. / Artificiella Neurala Nätverk löser framgångsrikt ett brett spektrum av problem med imponerande prestanda. Ändå är det ofta mycket lite eller ingenting som går att förstå bakom dessa svart-låda-lösningar, eftersom de är svåra att tolka och desto svårare att förklara. Den här uppsatsen föreslår en uppsättning komplementerande tolkningsbara visualiseringsmodeller av neural aktivitet, utvecklad genom prototypering, för att besvara forskningsfrågan ”Hur kan användningsprocessen av Rekurrenta Neurala Nätverk för textgenerering visualiseras på ett sätt för att automatiskt detektera och förklara tolkningsbar funktionalitet hos några enskilda dolda neuroner?”. Specifikt används en standardoch en LSTM (långt korttidsminne)-arkitektur för teckenrespektive ordprediktering som testbäddar. Forskningsmetoden är experimentell; orsakssamband mellan specifika typer av tecken/ord i texten som triggar neuroner, och detekterade mönster av motsvarande nervimpulser undersöks. Resultatet avslöjar inte bara att neuroner med tydliga och konsekventa tecken/ord-specifika aktivitetsmönster existerar, men också att de utvecklade modellerna för visualisering framgångsrikt kan automatiskt upptäcka och tolkningsbart presentera några av dessa.
102

Predicting trajectories of golf balls using recurrent neural networks / Förutspå bollbanan för en golfboll med neurala nätverk

Jansson, Anton January 2017 (has links)
This thesis is concerned with the problem of predicting the remaining part of the trajectory of a golf ball as it travels through the air where only the three-dimensional position of the ball is captured. The approach taken to solve this problem relied on recurrent neural networks in the form of the long short-term memory networks (LSTM). The motivation behind this choice was that this type of networks had led to state-of-the-art performance for similar problems such as predicting the trajectory of pedestrians. The results show that using LSTMs led to an average reduction of 36.6 % of the error in the predicted impact position of the ball, compared to previous methods based on numerical simulations of a physical model, when the model was evaluated on the same driving range that it was trained on. Evaluating the model on a different driving range than it was trained on leads to improvements in general, but not for all driving ranges, in particular when the ball was captured at a different frequency compared to the data that the model was trained on. This problem was solved to some extent by retraining the model with small amounts of data on the new driving range. / Detta examensarbete har studerat problemet att förutspå den fullständiga bollbanan för en golfboll när den flyger i luften där endast den tredimensionella positionen av bollen observerades. Den typ av metod som användes för att lösa problemet använde sig av recurrent neural networks, i form av long short-term memory nätverk (LSTM). Motivationen bakom detta var att denna typ av nätverk hade lett till goda resultatet för liknande problem. Resultatet visar att använda sig av LSTM nätverk leder i genomsnitt till en 36.6 % förminskning av felet i den förutspådda nedslagsplatsen för bollen jämfört mot tidigare metoder som använder sig av numeriska simuleringar av en fysikalisk modell, om modellen användes på samma golfbana som den tränades på. Att använda en modell som var tränad på en annan golfbana leder till förbättringar i allmänhet, men inte om modellen användes på en golfbana där bollen fångades in med en annan frekvens. Detta problem löstes till en viss mån genom att träna om modellen med lite data från den nya golfbanan.
103

Federated Learning for Time Series Forecasting Using LSTM Networks: Exploiting Similarities Through Clustering / Federerad inlärning för tidserieprognos genom LSTM-nätverk: utnyttjande av likheter genom klustring

Díaz González, Fernando January 2019 (has links)
Federated learning poses a statistical challenge when training on highly heterogeneous sequence data. For example, time-series telecom data collected over long intervals regularly shows mixed fluctuations and patterns. These distinct distributions are an inconvenience when a node not only plans to contribute to the creation of the global model but also plans to apply it on its local dataset. In this scenario, adopting a one-fits-all approach might be inadequate, even when using state-of-the-art machine learning techniques for time series forecasting, such as Long Short-Term Memory (LSTM) networks, which have proven to be able to capture many idiosyncrasies and generalise to new patterns. In this work, we show that by clustering the clients using these patterns and selectively aggregating their updates in different global models can improve local performance with minimal overhead, as we demonstrate through experiments using realworld time series datasets and a basic LSTM model. / Federated Learning utgör en statistisk utmaning vid träning med starkt heterogen sekvensdata. Till exempel så uppvisar tidsseriedata inom telekomdomänen blandade variationer och mönster över längre tidsintervall. Dessa distinkta fördelningar utgör en utmaning när en nod inte bara ska bidra till skapandet av en global modell utan även ämnar applicera denna modell på sin lokala datamängd. Att i detta scenario införa en global modell som ska passa alla kan visa sig vara otillräckligt, även om vi använder oss av de mest framgångsrika modellerna inom maskininlärning för tidsserieprognoser, Long Short-Term Memory (LSTM) nätverk, vilka visat sig kunna fånga komplexa mönster och generalisera väl till nya mönster. I detta arbete visar vi att genom att klustra klienterna med hjälp av dessa mönster och selektivt aggregera deras uppdateringar i olika globala modeller kan vi uppnå förbättringar av den lokal prestandan med minimala kostnader, vilket vi demonstrerar genom experiment med riktigt tidsseriedata och en grundläggande LSTM-modell.
104

Federated Learning for Time Series Forecasting Using Hybrid Model

Li, Yuntao January 2019 (has links)
Time Series data has become ubiquitous thanks to affordable edge devices and sensors. Much of this data is valuable for decision making. In order to use these data for the forecasting task, the conventional centralized approach has shown deficiencies regarding large data communication and data privacy issues. Furthermore, Neural Network models cannot make use of the extra information from the time series, thus they usually fail to provide time series specific results. Both issues expose a challenge to large-scale Time Series Forecasting with Neural Network models. All these limitations lead to our research question:Can we realize decentralized time series forecasting with a Federated Learning mechanism that is comparable to the conventional centralized setup in forecasting performance?In this work, we propose a Federated Series Forecasting framework, resolving the challenge by allowing users to keep the data locally, and learns a shared model by aggregating locally computed updates. Besides, we design a hybrid model to enable Neural Network models utilizing the extra information from the time series to achieve a time series specific learning. In particular, the proposed hybrid outperforms state-of-art baseline data-central models with NN5 and Ericsson KPI data. Meanwhile, the federated settings of purposed model yields comparable results to data-central settings on both NN5 and Ericsson KPI data. These results together answer the research question of this thesis. / Tidseriedata har blivit allmänt förekommande tack vare överkomliga kantenheter och sensorer. Mycket av denna data är värdefull för beslutsfattande. För att kunna använda datan för prognosuppgifter har den konventionella centraliserade metoden visat brister avseende storskalig datakommunikation och integritetsfrågor. Vidare har neurala nätverksmodeller inte klarat av att utnyttja den extra informationen från tidsserierna, vilket leder till misslyckanden med att ge specifikt tidsserierelaterade resultat. Båda frågorna exponerar en utmaning för storskalig tidsserieprognostisering med neurala nätverksmodeller. Alla dessa begränsningar leder till vår forskningsfråga:Kan vi realisera decentraliserad tidsserieprognostisering med en federerad lärningsmekanism som presterar jämförbart med konventionella centrala lösningar i prognostisering?I det här arbetet föreslår vi ett ramverk för federerad tidsserieprognos som löser utmaningen genom att låta användaren behålla data lokalt och lära sig en delad modell genom att aggregera lokalt beräknade uppdateringar. Dessutom utformar vi en hybrid modell för att möjliggöra neurala nätverksmodeller som kan utnyttja den extra informationen från tidsserierna för att uppnå inlärning av specifika tidsserier. Den föreslagna hybrida modellen presterar bättre än state-of-art centraliserade grundläggande modeller med NN5och Ericsson KPIdata. Samtidigt ger den federerade ansatsen jämförbara resultat med de datacentrala ansatserna för både NN5och Ericsson KPI-data. Dessa resultat svarar tillsammans på forskningsfrågan av denna avhandling.
105

Unsupervised Anomaly Detection on Multi-Process Event Time Series

Vendramin, Nicoló January 2018 (has links)
Establishing whether the observed data are anomalous or not is an important task that has been widely investigated in literature, and it becomes an even more complex problem if combined with high dimensional representations and multiple sources independently generating the patterns to be analyzed. The work presented in this master thesis employs a data-driven pipeline for the definition of a recurrent auto-encoder architecture to analyze, in an unsupervised fashion, high-dimensional event time-series generated by multiple and variable processes interacting with a system. Facing the above mentioned problem the work investigates whether it is possible or not to use a single model to analyze patterns produced by different sources. The analysis of log files that record events of interaction between users and the radio network infrastructure is employed as realworld case-study for the given problem. The investigation aims to verify the performances of a single machine learning model applied to the learning of multiple patterns developed through time by distinct sources. The work proposes a pipeline, to deal with the complex representation of the data source and the definition and tuning of the anomaly detection model, that is based on no domain-specific knowledge and can thus be adapted to different problem settings. The model has been implemented in four different variants that have been evaluated over both normal and anomalous data, gathered partially from real network cells and partially from the simulation of anomalous behaviours. The empirical results show the applicability of the model for the detection of anomalous sequences and events in the described conditions, with scores reaching above 80% in terms of F1-score, and varying depending on the specific threshold setting. In addition, their deeper interpretation gives insights about the difference between the variants of the model and thus, their limitations and strong points. / Att fastställa huruvida observerade data är avvikande eller inte är en viktig uppgift som har studerats ingående i litteraturen och problemet blir ännu mer komplext, om detta kombineras med högdimensionella representationer och flera källor som oberoende genererar de mönster som ska analyseras. Arbetet som presenteras i denna uppsats använder en data-driven pipeline för definitionen av en återkommande auto-encoderarkitektur för att analysera, på ett oövervakat sätt, högdimensionella händelsetidsserier som genereras av flera och variabla processer som interagerar med ett system. Mot bakgrund av ovanstående problem undersöker arbetet om det är möjligt eller inte att använda en enda modell för att analysera mönster som producerats av olika källor. Analys av loggfiler som registrerar händelser av interaktion mellan användare och radionätverksinfrastruktur används som en fallstudie för det angivna problemet. Undersökningen syftar till att verifiera prestandan hos en enda maskininlärningsmodell som tillämpas för inlärning av flera mönster som utvecklats över tid från olika källor. Arbetet föreslår en pipeline för att hantera den komplexa representationen hos datakällorna och definitionen och avstämningen av anomalidetektionsmodellen, som inte är baserad på domänspecifik kunskap och därför kan anpassas till olika probleminställningar. Modellen har implementerats i fyra olika varianter som har utvärderats med avseende på både normala och avvikande data, som delvis har samlats in från verkliga nätverksceller och delvis från simulering av avvikande beteenden. De empiriska resultaten visar modellens tillämplighet för detektering av avvikande sekvenser och händelser i det föreslagna ramverket, med F1-score över 80%, varierande beroende på den specifika tröskelinställningen. Dessutom ger deras djupare tolkning insikter om skillnaden mellan olika varianter av modellen och därmed deras begränsningar och styrkor.
106

Training Neural Models for Abstractive Text Summarization

Kryściński, Wojciech January 2018 (has links)
Abstractive text summarization aims to condense long textual documents into a short, human-readable form while preserving the most important information from the source document. A common approach to training summarization models is by using maximum likelihood estimation with the teacher forcing strategy. Despite its popularity, this method has been shown to yield models with suboptimal performance at inference time. This work examines how using alternative, task-specific training signals affects the performance of summarization models. Two novel training signals are proposed and evaluated as part of this work. One, a novelty metric, measuring the overlap between n-grams in the summary and the summarized article. The other, utilizing a discriminator model to distinguish human-written summaries from generated ones on a word-level basis. Empirical results show that using the mentioned metrics as rewards for policy gradient training yields significant performance gains measured by ROUGE scores, novelty scores and human evaluation. / Abstraktiv textsammanfattning syftar på att korta ner långa textdokument till en förkortad, mänskligt läsbar form, samtidigt som den viktigaste informationen i källdokumentet bevaras. Ett vanligt tillvägagångssätt för att träna sammanfattningsmodeller är att använda maximum likelihood-estimering med teacher-forcing-strategin. Trots dess popularitet har denna metod visat sig ge modeller med suboptimal prestanda vid inferens. I det här arbetet undersöks hur användningen av alternativa, uppgiftsspecifika träningssignaler påverkar sammanfattningsmodellens prestanda. Två nya träningssignaler föreslås och utvärderas som en del av detta arbete. Den första, vilket är en ny metrik, mäter överlappningen mellan n-gram i sammanfattningen och den sammanfattade artikeln. Den andra använder en diskrimineringsmodell för att skilja mänskliga skriftliga sammanfattningar från genererade på ordnivå. Empiriska resultat visar att användandet av de nämnda mätvärdena som belöningar för policygradient-träning ger betydande prestationsvinster mätt med ROUGE-score, novelty score och mänsklig utvärdering.
107

FLEX: Force Linear to Exponential : Improving Time Series Forecasting Models For Hydrological Level Using A Scalable Ensemble Machine Learning Approach

van den Brink, Koen January 2022 (has links)
Time-series forecasting is an area of machine learning that can be applied to many real-life problems. It is used in areas such as water level forecasting, which aims to help people evacuate on time for floods. This thesis aims to contribute to the research area of time-series forecasting, by introducing a simple but novel ensemble model: Force Linear to Exponential (FLEX). A FLEX ensemble first forecasts points that are exponentially further into the forecasting horizon. After this, the gaps between forecasted points are produced from said forecasted points, as well as the entire data history. This simple model is able to outperform all base models considered in this thesis, even when having the same amount of parameters to tune. / Tidsserieprognoser är ett område för maskininlärning som kan tillämpas på många verkliga problem. Det används i områden som vattenståndsprognoser, som syftar till att hjälpa människor att evakuera i tid för översvämningar. Denna uppsats syftar till att bidra till forskningsområdet tidsserieprognoser genom att introducera en enkel men ny ensemblemodell: Force Linear to Exponential (FLEX). En FLEX-ensemble prognostiserar först punkter som ligger exponentiellt längre in i prognoshorisonten. Efter detta produceras gapen mellan prognostiserade punkter från nämnda prognostiserade punkter, såväl som hela datahistoriken. Denna enkla modell kan överträffa alla basmodeller som behandlas i denna uppsats, även när den har samma mängd parametrar att ställa in.
108

Predicting a business application's cloud server CPU utilization using the machine learning model LSTM

Nääs Starberg, Filip, Rooth, Axel January 2021 (has links)
Cloud Computing sees increased adoption as companies seek to increase flexibility and reduce cost. Although the large cloud service providers employ a pay-as-you-go pricing model and enable customers to scale up and down quickly, there is still room for improvement. Workload in the form of CPU utilization often fluctuates which leads to unnecessary cost and environmental impact for companies. To help mitigate this issue, the aim of this paper is to predict future CPU utilization using a long short-term memory (LSTM) machine learning model. By predicting utilization up to 30 minutes into the future, companies are able to scale their capacity just in time and avoid unnecessary cost and damage to the environment. The study is divided into two parts. The first part analyses how well the LSTM model performs when predicting one step at a time compared with a state-of-the-art model. The second part analyses the accuracy of the LSTM when making predictions up to 30 minutes into the future. To allow for an objective analysis of results, the LSTM is compared with a standard RNN, which is similar to the LSTM in its inherit algorithmic structure. To conclude, the results suggest that LSTM may be a useful tool for reducing cost and unnecessary environmental impact for business applications hosted on a public cloud. / Användandet av molntjänster ökar bland företag som önskar förbättrad flexibilitet och sänkta kostnader. De stora molntjänstleverantörerna använder en prismodell där kostnaden är direkt kopplad till användningen, och låter kunderna snabbt ställa om sin kapacitet, men det finns ändå förbättringsmöjligheter. CPU-behoven fluktuerar ofta vilket leder till meningslösa kostnader och onödig påverkan på klimatet när kapacitet är outnyttjad. För att lindra detta problem används i denna rapport en LSTM maskininlärningsmodell för att förutspå framtida CPU-utnyttjande. Genom att förutspå utnyttjandet upp till 30 minuter in i framtiden hinner företag ställa om sin kapacitet och undvika onödig kostnad och klimatpåverkan. Arbetet ¨ar uppdelat i två delar. Först en del där LSTM-modellen förutspår ett tidssteg åt gången. Därefter en del som analyserar träffsäkerheten för LSTM flera tidssteg in i framtiden, upp till 30 tidssteg. För att möjliggöra en objektiv utvärdering så jämfördes LSTM-modellen med ett standard recurrent neural network (RNN) vilken liknar LSTM i sin struktur. Resultaten i denna studie visar att LSTM verkar vara ¨överlägsen RNN, både när det gäller att förutspå ett tidssteg in i framtiden och när det gäller flera tidssteg in i framtiden. LSTM-modellen var kapabel att förutspå CPU-utnyttjandet 30 minuter in i framtiden med i hög grad bibehållen träffsäkerhet, vilket också var målet med studien. Sammanfattningsvis tyder resultaten på att denna LSTM-modell, och möjligen liknande LSTM-modeller, har potential att användas i samband med företagsapplikationer då man önskar att reducera onödig kostnad och klimatpåverkan.
109

Prediction of Component Breakdowns in Commercial Trucks : Using Machine Learning on Operational and Repair History Data

Bremer, Einar January 2020 (has links)
The strive for cost reduction of services and repairs combined with a desire for increased vehicle reliability has led to the development of predictive maintenance programs. In maintenance plans, accurate forecasts and predictions regarding which components in a vehicle is in risk of a breakdown is bene_cial to obtain since this enables components to be predictively exchanged or serviced before they break down and cause unnecessary downtime. Previous works in data driven predictive maintenance models typically utilize customer and operational data to predict component wear trough regressive or classi_er models. In this thesis the possibilities and bene_ts associated with utilizing vehicle repair and service history data for trucks in a predictive model is investigated. The repair and service data is a time series of irregularly sampled visits to a service centre and is used in conjunction with operational data and chassis con_guration data collected by a truck manufacturer. To tackle the problem a Random Forest, a Neural Network as well as a Recurrent Neural Network model was tested on the various datasets. The Recurrent Neural Network model made it possible to utilize the entire vehicle repair time series data whereas the Random Forest model used a condensed form of the repair data. The Recurrent model proved to perform signi_cantly better than the Neural Network model trained on operational data however it was not proven signi_cantly better than a Random Forest model trained on the condensed form of repair data. A conclusion that can be drawn is that repair history data can increase the performance of a predictive model, however it is unclear if the time sequence plays a part or if a list of previously exchanged parts works equally well. / Strävan efter att reducera kostnader av reparationer och service samt att öka fordons pålitlighet har lett till utvecklingen av prediktiva underhållsprogram. Träffsäkra förutsägeleser och prediktioner kring vilka delar som riskerar att fallera möjliggör prediktiva utbytelser eller service av delar innan de går sönder. Tidigare arbeten i prediktivt underhåll använder sig vanligen av kunddata och operationell data för att generera en prediktion genom regressions eller klassificeringsmetoder. I det här examensarbetet utforskas möjligheterna och fördelarna med att använda verkstadsdata från lastbilar i en prediktiv modell. Verkstadsdatan består av en oregelbundet genererad tidsserie av besök till en serviceanläggning och används i kombination med operationell data samt chassiutförandedata. För att angripa problemet användes en Random Forest, en Neuronnäts samt en Recurrent (Återkommande) Neuronnätsmodell på de olika datakällorna. Recurrent Neuronnätsmodellen möjliggjorde användandet av kompletta tidserieverkstadsdatan och denna modell visade sig ge bäst resultat men kunde inte påvisas  vara signifikant bättre än en Random Forest modell som tränades på en komprimerad variant av verkstadsdatan.  En slutsats som kan dras av arbetet är att verkstadsdatan kan öka prestandan i en prediktiv model men att det är oklart om det är tidssekvensen av datat som ger ökningen eller om det fungerar lika bra med en lista över tidigare utbytta delar.
110

Short-term Forecasting of EV Charging Stations Power Consumption at Distribution Scale / Korttidsprognoser för elbils laddstationer Strömförbrukning i distributionsskala

Clerc, Milan January 2022 (has links)
Due to the intermittent nature of renewable energy production, maintaining the stability of the power supply system is becoming a significant challenge of the energy transition. Besides, the penetration of Electric Vehicles (EVs) and the development of a large network of charging stations will inevitably increase the pressure on the electrical grid. However, this network and the batteries that are connected to it also constitute a significant resource to provide ancillary services and therefore a new opportunity to stabilize the power grid. This requires to be able to produce accurate short term forecasts of the power consumption of charging stations at distribution scale. This work proposes a full forecasting framework, from the transformation of discrete charging sessions logs into a continuous aggregated load profile, to the pre-processing of the time series and the generation of predictions. This framework is used to identify the most appropriate model to provide two days ahead predictions of the hourly load profile of large charging stations networks. Using three years of data collected at Amsterdam’s public stations, the performance of several state-of-the-art forecasting models, including Gradient Boosted Trees (GBTs) and Recurrent Neural Networks (RNNs) is evaluated and compared to a classical time series model (Auto Regressive Integrated Moving Average (ARIMA)). The best performances are obtained with an Extreme Gradient Boosting (XGBoost) model using harmonic terms, past consumption values, calendar information and temperature forecasts as prediction features. This study also highlights periodical patterns in charging behaviors, as well as strong calendar effects and an influence of temperature on EV usage. / På grund av den intermittenta karaktären av förnybar energiproduktion, blir upprätthållandet av elnäts stabilitet en betydande utmaning. Dessutom kommer penetrationen av elbilar och utvecklingen av ett stort nät av laddstationer att öka trycket på elnätet. Men detta laddnät och batterierna som är anslutna till det utgör också en betydande resurs för att tillhandahålla kompletterande tjänster och därför en ny möjlighet att stabilisera elnätet. För att göra sådant bör man kunna producera korrekta kortsiktiga prognoser för laddstationens strömförbrukning i distributions skala. Detta arbete föreslår ett fullständigt prognos protokoll, från omvandlingen av diskreta laddnings sessioner till en kontinuerlig förbrukningsprofil, till förbehandling av tidsserier och generering av förutsägelser. Protokollet används för att identifiera den mest lämpliga metoden för att ge två dagars förutsägelser av timförbrukning profilen för ett stort laddstation nät. Med hjälp av tre års data som samlats in på Amsterdams publika stationer utvärderas prestanda för flera avancerade prognosmodeller som är gradient boosting och återkommande neurala nätverk, och jämförs med en klassisk tidsseriemodell (ARIMA). De bästa resultaten uppnås med en XGBoost modell med harmoniska termer, tidigare förbrukningsvärden, kalenderinformation och temperatur prognoser som förutsägelse funktioner. Denna studie belyser också periodiska mönster i laddningsbeteenden, liksom starka kalendereffekter och temperaturpåverkan på elbilar-användning.

Page generated in 0.083 seconds