Spelling suggestions: "subject:"deduced basis method"" "subject:"deduced oasis method""
1 |
縮基法初始值問題之數值研究 / Numerical studies of reduced basis methos for initial value problems陳揚敏 Unknown Date (has links)
縮基法(RBM) 是對參數化的曲線求逼近解的一個方法,基本上乃使用投影法將解曲線投射到解空間的一子空間中,如此一來,可將原問題轉換成一較小的系統,並經由數值計算出小系統的解,來求得大系統的一逼近解。在本篇論文中主要的乃探討RBM在常微分方程組初始值問題上的應用,並發展一套含有誤差控制的演算法。
本篇論文中所採用的ODE Solver 乃由Gordon 和Shampine 基於Adams PECE方法所發展的。在求解的過程中,對於計算解誤差的控制我們除了利用ODE Solver 的誤差估計,另外我們又發展對縮基解(reduced basis solution) 的後(Aposteriori)
誤差估計,以確保數值計算解的準確性。我們所考慮使用的子空間有三種Taylor, Lagrange , Hermite 。同時為了要增加數值的特定性及簡化小系統的求解工作,我們先行將子空間的基底直交化。因此,除了誤差的控制外,我們也討論了roundoff error 對向量直交化及形成小系統時所造成的影響,並設立誤差標準以判別何時誤差過大到嚴重影響縮基解的準確度。
本篇論文的目的是希望利用RBM發展出一套解常微分方程組初始值問題的求算法,以期計算解能在較短的時間內準確的被計算出來。 / The reduced basis method(RBM) is a scheme for approximating parametric solution curves. The basic technique of RBM is projection. By applying the method, we can find an approximate solution of the original system which satisfies a system of smaller size. In this paper, we mainly concern the applications of RBM for ODE initial value problems and develop an algorithm which contains a set of error controls.
The ODE solver used in this paper is developed by Gordon and Shampine based on Adams PECE formulas. To assure the accuracy of the reduced basis approximation, we set up an appropriate automatic error control in calling GS solver and develop an a posteriori error estimate to keep the reduction error under control.
The subspaces considered are Taylor, Lagrange and Hermite subspaces.In the meantime, in order to improve the numerical stability and simplify the computation of the reduced basis solution, we orthogonalize the generators of reduced subspaces. We also discuss the roundoff errors in the orthogonalization process and build up a criterion for identifying the case the accuracy of the reduced basis solution up a criterion for identifying the case the accuracy of the reduced basis solution is destroyed by the errors.
The aim of this paper is to develop an algorithm to solve the ODE initial value problems efficiently.
|
2 |
Identification of Convection Constants for Electronic Packages Using Modified Genetic Algorithm and Reduced-Basis MethodYang, Zhenglin, Lee, Jung Hong, Liu, Guirong, Patera, Anthony T., Lam, Khin Yong 01 1900 (has links)
A new inverse analysis method is presented to identify parameters of heat convection in microelectronic packages. This approach adopts a modified Micro Genetic Algorithm (µGA) in finding the global optimum of parameters. A reduced-basis approach is introduced in the forward heat transfer analysis so as to significantly improve the efficiency in the calculation. Different identification procedures are employed to identify heat convection coefficients of a typical microelectronic package. Comparisons between different algorithms are performed. Results show that the use of the reduced-basis method together with the modified µGA outperforms the conventional GAs significantly. The presented method of coefficient identification is ideal for practical applications. It is efficient enough even for online analysis of both forward and inverse problem. / Singapore-MIT Alliance (SMA)
|
3 |
Mathematical modelling and numerical simulation in materials scienceBoyaval, Sébastien 16 December 2009 (has links) (PDF)
In a first part, we study numerical schemes using the finite-element method to discretize the Oldroyd-B system of equations, modelling a viscoelastic fluid under no flow boundary condition in a 2- or 3- dimensional bounded domain. The goal is to get schemes which are stable in the sense that they dissipate a free-energy, mimicking that way thermodynamical properties of dissipation similar to those actually identified for smooth solutions of the continuous model. This study adds to numerous previous ones about the instabilities observed in the numerical simulations of viscoelastic fluids (in particular those known as High Weissenberg Number Problems). To our knowledge, this is the first study that rigorously considers the numerical stability in the sense of an energy dissipation for Galerkin discretizations. In a second part, we adapt and use ideas of a numerical method initially developped in the works of Y. Maday, A.T. Patera et al., the reduced-basis method, in order to efficiently simulate some multiscale models. The principle is to numerically approximate each element of a parametrized family of complicate objects in a Hilbert space through the closest linear combination within the best linear subspace spanned by a few elementswell chosen inside the same parametrized family. We apply this principle to numerical problems linked : to the numerical homogenization of second-order elliptic equations, with two-scale oscillating diffusion coefficients, then ; to the propagation of uncertainty (computations of the mean and the variance) in an elliptic problem with stochastic coefficients (a bounded stochastic field in a boundary condition of third type), last ; to the Monte-Carlo computation of the expectations of numerous parametrized random variables, in particular functionals of parametrized Itô stochastic processes close to what is encountered in micro-macro models of polymeric fluids, with a control variate to reduce its variance. In each application, the goal of the reduced-basis approach is to speed up the computations without any loss of precision
|
4 |
Uncertainty Quantification for low-frequency Maxwell equations with stochastic conductivity modelsKamilis, Dimitrios January 2018 (has links)
Uncertainty Quantification (UQ) has been an active area of research in recent years with a wide range of applications in data and imaging sciences. In many problems, the source of uncertainty stems from an unknown parameter in the model. In physical and engineering systems for example, the parameters of the partial differential equation (PDE) that model the observed data may be unknown or incompletely specified. In such cases, one may use a probabilistic description based on prior information and formulate a forward UQ problem of characterising the uncertainty in the PDE solution and observations in response to that in the parameters. Conversely, inverse UQ encompasses the statistical estimation of the unknown parameters from the available observations, which can be cast as a Bayesian inverse problem. The contributions of the thesis focus on examining the aforementioned forward and inverse UQ problems for the low-frequency, time-harmonic Maxwell equations, where the model uncertainty emanates from the lack of knowledge of the material conductivity parameter. The motivation comes from the Controlled-Source Electromagnetic Method (CSEM) that aims to detect and image hydrocarbon reservoirs by using electromagnetic field (EM) measurements to obtain information about the conductivity profile of the sub-seabed. Traditionally, algorithms for deterministic models have been employed to solve the inverse problem in CSEM by optimisation and regularisation methods, which aside from the image reconstruction provide no quantitative information on the credibility of its features. This work employs instead stochastic models where the conductivity is represented as a lognormal random field, with the objective of providing a more informative characterisation of the model observables and the unknown parameters. The variational formulation of these stochastic models is analysed and proved to be well-posed under suitable assumptions. For computational purposes the stochastic formulation is recast as a deterministic, parametric problem with distributed uncertainty, which leads to an infinite-dimensional integration problem with respect to the prior and posterior measure. One of the main challenges is thus the approximation of these integrals, with the standard choice being some variant of the Monte-Carlo (MC) method. However, such methods typically fail to take advantage of the intrinsic properties of the model and suffer from unsatisfactory convergence rates. Based on recently developed theory on high-dimensional approximation, this thesis advocates the use of Sparse Quadrature (SQ) to tackle the integration problem. For the models considered here and under certain assumptions, we prove that for forward UQ, Sparse Quadrature can attain dimension-independent convergence rates that out-perform MC. Typical CSEM models are large-scale and thus additional effort is made in this work to reduce the cost of obtaining forward solutions for each sampling parameter by utilising the weighted Reduced Basis method (RB) and the Empirical Interpolation Method (EIM). The proposed variant of a combined SQ-EIM-RB algorithm is based on an adaptive selection of training sets and a primal-dual, goal-oriented formulation for the EIM-RB approximation. Numerical examples show that the suggested computational framework can alleviate the computational costs associated with forward UQ for the pertinent large-scale models, thus providing a viable methodology for practical applications.
|
5 |
Un Framework de calcul pour la méthode des bases réduites : applications à des problèmes non-linéaire multi-physiques / A computational reduced basis framework : applications to nonlinears multiphysics problemsVeys, Stéphane 26 November 2014 (has links)
Aujourd'hui, dans de nombreux champs d'applications, de plus en plus de problèmes d'ingénierie demandent d'avoir une évaluation précise et efficace de quantités d'intérêt.Très souvent, ces quantités dépendent de la solution d'une équation aux dérivées partielles (EDP) paramétrée où les paramètres -- physiques ou géométriques -- sont les entrées du modèle et les quantités d'intérêt -- valeurs moyennes -- en sont les sorties.Les techniques de réduction d'ordre, notamment la méthode des bases réduites qui est la méthode utilisée tout au long de ces travaux,permettent de répondre à ces demandes.Dans cette thèse nous nous intéressons à la mise en place d'un framework en C++, supportant le calcul parallèle, permettant d'appliquer la méthode des bases réduites à des problèmes multi-physiques non-linéaires tels queles problèmes de convection naturelle (couplage fluide-thermique), ou encore la modélisation d'aimants de type résistifs à hauts champs (nous nous limitons au couplage thermo-electrique) aboutissant à une étude sur la quantification d'incertitude.La méthode des bases réduites s'appuie naturellement sur une approximation obtenue via la discrétisation élément fini du problème à traiter. Pour cela nous utilisons la librairie de calcul Feel++, spécialisée dans la résolution d'EDPs.Nous nous intéressons également aux problèmes de type multi-échelles.La particularité de ces problèmes est de manipuler un ensemble de phénomènes mettant en jeu des échelles différentes, comme c'est le cas par exemple lorsque nous considérons un écoulement en milieu poreux.La méthode des éléments finis multi-échelles permet d'avoir le comportement "global", associé aux grandes échelles, de la solution du problème sans devoir le résoudre sur les petites échelles.Nous proposons une nouvelle construction des fonctions de base élément fini multi-échelles basée sur la méthode des bases réduites. / Today, in many fields of applications, more and more engineering problems require to have an accurate and efficient evaluation of quantities of interest.Often, these quantities depend on a partial differential equation (PDE) parameterized solution -- physical or geometrical -- are the model inputs and the quantities of interest -- average values -- are the outputs.The order reduction techniques, including reduced basis method which is the method used throughout this work, can meet these demands.In this thesis, we focus on the establishment of a framework in C ++ supporting parallel computing, which applies the reduced basis method to nonlinear multiphysics problems such as problems with natural convection (fluid-thermal coupling) or the high field resistive magnet modeling (we limit ourselves to thermo-electric coupling) leading to a study on the uncertainty quantification.The reduced basis method naturally relies on an approximation obtained using the finite element discretization of the problem being treated. For this, we use the Feel ++ computation library specialized in PDE resolution.We are also interested by multiscale problems.The particularity of these problems is to manipulate a set of phenomena involving different scales, as this is the case for example when we consider a flow in porous media.The multiscale finite element method allows having a "global" behavior, linked with large scales, of the problem solution without solving it on small scales.We propose a new construction of multiscale finite element basis functions based on the reduced basis method.
|
6 |
Résolution numérique d'équations aux dérivées partielles à coefficients variables / Numerical resolution of partial differential equations with variable coefficientsAghili, Joubine 02 December 2016 (has links)
Cette thèse aborde différents aspects de la résolution numérique des Equations aux Dérivées Partielles.Le premier chapitre est consacré à l'étude de la méthode Mixed High-Order (MHO). Il s'agit d'une méthode mixte de dernière génération permettant d'obtenir des approximations d'ordre arbitraire sur maillages généraux. Le principal résultat obtenu est l'équivalence entre la méthode MHO et une méthode primale de type Hybrid High-Order (HHO).Dans le deuxième chapitre, nous appliquons la méthode MHO/HHO à des problèmes issus de la mécanique des fluides. Nous considérons d'abord le problème de Stokes, pour lequel nous obtenons une discrétisation d'ordre arbitraire inf-sup stable sur maillages généraux. Des estimations d'erreur optimales en normes d'énergie et L2 sont proposées. Ensuite, nous étudions l'extension au problème d'Oseen, pour lequel on propose une estimation d'erreur en norme d'énergie où on trace explicitement la dépendance du nombre de Péclet local.Dans le troisième chapitre, nous analysons la version hp de la méthode HHO pour le problème de Darcy. Le schéma proposé permet de traiter des maillages généraux ainsi que de faire varier le degré polynomial d'un élément à l'autre. La dépendance de l'anisotropie locale du coefficient de diffusion est tracée explicitement dans l'analyse d'erreur en normes d'énergie et L2.La thèse se clôture par une ouverture sur la réduction de problèmes de diffusion à coefficients variables. L'objectif consiste à comprendre l'impact du choix de la formulation (mixte ou primale) utilisée pour la projection sur l'espace réduit sur la qualité du modèle réduit. / This Ph.D. thesis deals with different aspects of the numerical resolution of Partial Differential Equations.The first chapter focuses on the Mixed High-Order method (MHO). It is a last generation mixed scheme capable of arbitrary order approximations on general meshes. The main result of this chapter is the equivalence between the MHO method and a Hybrid High-Order (HHO) primal method.In the second chapter, we apply the MHO/HHO method to problems in fluid mechanics. We first address the Stokes problem, for which a novel inf-sup stable, arbitrary-order discretization on general meshes is obtained. Optimal error estimates in both energy- and L2-norms are proved. Next, an extension to the Oseen problem is considered, for which we prove an error estimate in the energy norm where the dependence on the local Péclet number is explicitly tracked.In the third chapter, we analyse a hp version of the HHO method applied to the Darcy problem. The resulting scheme enables the use of general meshes, as well as varying polynomial orders on each face.The dependence with respect to the local anisotropy of the diffusion coefficient is explicitly tracked in both the energy- and L2-norms error estimates.In the fourth and last chapter, we address a perspective topic linked to model order reduction of diffusion problems with a parametric dependence. Our goal is in this case to understand the impact of the choice of the variational formulation (primal or mixed) used for the projection on the reduced space on the quality of the reduced model.
|
7 |
Reduced basis method applied to large non-linear multi-physics problems : application to high field magnets design / Bases réduites pour des problèmes multi-physiques non-linéaires de grande taille : application au design d'aimants à haut champDaversin - Catty, Cécile 19 September 2016 (has links)
Le LNCMI est un grand équipement du CNRS. Il met à la disposition de la communauté scientifique internationale des aimants produisant des champs magnétiques intenses (entre 24 et 36 Teslas pendant plusieurs heures), utilisés par les chercheurs comme un moyen d'exploration et de contrôle de la matière. Dans la thèse, nous nous intéressons à la simulation de ce type d'aimants, dans le but de les étudier, d'optimiser leur design, ou encore de faire des analyses d'incidents. Ces modèles 30 sont basés sur des équations aux dérivées partielles couplées non-linéaires. Au vu de leur complexité, nous avons développé des méthodes de réduction d'ordre, permettant de réduire considérablement les temps de calcul associés. En particulier, nous pensons avoir levé un verrou majeur de l'utilisation du cadre méthodologique de réduction d'ordre pour des problèmes multi-physiques non-linéaires. / The magnetic field constitutes a powerfull tool for researchers, especially to determine the properties of the matter. This kind of applications requires magnetic fields of high intensity. The "Laboratoire National des Champs Magnetiques Intenses" (LNCMI) develops resistive magnets providing such magnetic field to scientists. The design of these magnets represents a challenge interms of design. We have developed a range of non-linear coupled models taking into account the whole involved physics, implemented through the Feel++ library. Designed for many query context, the reduced basis method applied to the multi-physics model aims to circumvent the complexity of the problem. lts efficiency allows to move towards parametric studies and sensitivity analysis in various concrete applications. Especially, the method SER we introduce in this thesis is a significant breakthrough for non-linear and non-affine problems in an industrial context.
|
8 |
The Reduced basis method applied to aerothermal simulations / La méthode des bases réduites appliquées à des simulations d'aérothermieWahl, Jean-Baptiste 13 September 2018 (has links)
Nous présentons dans cette thèse nos travaux sur la réduction d'ordre appliquée à des simulations d'aérothermie. Nous considérons le couplage entre les équations de Navier-Stokes et une équations d'énergie de type advection-diffusion. Les paramètres physiques considérés nous obligent à considéré l'introduction d'opérateurs de stabilisation de type SUPG ou GLS. Le but étant d'ajouter une diffusion numérique dans la direction du champs de convection, afin de supprimer les oscillations non-phyisques. Nous présentons également notre stratégie de résolution basée sur la méthode des bases réduite (RBM). Afin de retrouver une décomposition affine, essentielle pour l'application de la RBM, nous avons implémenté une version discrète de la méthode d'interpolation empirique (EIM). Cette variante permet de la construction d'approximation affine pour des opérateurs complexes. Nous utilisons notamment cette méthode pour la réduction des opérateurs de stabilisations. Cependant, la construction des bases EIM pour des problèmes non-linéaires implique un grand nombre de résolution éléments finis. Pour pallier à ce problème, nous mettons en oeuvre les récents développement de l'algorithme de coconstruction entre EIM et RBM (SER). / We present in this thesis our work on model order reduction for aerothermal simulations. We consider the coupling between the incompressible Navier-Stokes equations and an advection-diffusion equation for the temperature. Since the physical parameters induce high Reynolds and Peclet numbers, we have to introduce stabilization operators in the formulation to deal with the well known numerical stability issue. The chosen stabilization, applied to both fluid and heat equations, is the usual Streamline-Upwind/Petrov-Galerkin (SUPG) which add artificial diffusivity in the direction of the convection field. We also introduce our order reduction strategy for this model, based on the Reduced Basis Method (RBM). To recover an affine decomposition for this complex model, we implemented a discrete variation of the Empirical Interpolation Method (EIM) which is a discrete version of the original EIM. This variant allows building an approximated affine decomposition for complex operators such as in the case of SUPG. We also use this method for the non-linear operators induced by the shock capturing method. The construction of an EIM basis for non-linear operators involves a potentially huge number of non-linear FEM resolutions - depending on the size of the sampling. Even if this basis is built during an offline phase, we usually can not afford such expensive computational cost. We took advantage of the recent development of the Simultaneous EIM Reduced basis algorithm (SER) to tackle this issue.
|
9 |
Mathematical modelling and numerical simulation in materials science / Modélisation mathématique et simulation numérique en science des matériauxBoyaval, Sébastien 16 December 2009 (has links)
Dans une première partie, nous étudions des schémas numériques utilisant la méthode des éléments finis pour discrétiser le système d'équations Oldroyd-B modélisant un fluide viscolélastique avec conditions de collement dans un domaine borné, en dimension deux ou trois. Le but est d'obtenir des schémas stables au sens où ils dissipent une énergie libre, imitant ainsi des propriétés thermodynamiques de dissipation similaires à celles identifiées pour des solutions régulières du modèle continu. Cette étude s'ajoute a de nombreux travaux antérieurs sur les instabilités observées dans les simulations numériques d'équations viscoélastiques (dont celles connues comme étant des Problèmes à Grand Nombre de Weissenberg). A notre connaissance, c'est la première étude qui considère rigoureusement la stabilité numérique au sens de la dissipation d'une énergie pour des discrétisations de type Galerkin. Dans une seconde partie, nous adaptons et utilisons les idées d'une méthode numérique initialement développée dans des travaux de Y. Maday, A. T. Patera et al., la méthode des bases réduites, pour simuler efficacement divers modèles multi-échelles. Le principe est d'approcher numériquement chaque élément d'une collection paramétrée d'objets complexes dans un espace de Hilbert par la plus proche combinaison linéaire dans le meilleur sous-espace vectoriel engendré par quelques éléments bien choisis au sein de la même collection paramétrée. Nous appliquons ce principe pour des problèmes numériques liés : à l'homogénéisation numérique d'équations elliptiques scalaires du second-ordre, avec coefficients de diffusion oscillant à deux échelles, puis ; à la propagation d'incertitudes (calculs de moyenne et de variance) dans un problème elliptique avec coefficients stochastiques (un champ aléatoire borné dans une condition de bord du troisième type), enfin ; au calcul Monte-Carlo de l'espérance de nombreuses variables aléatoires paramétrées, en particulier des fonctionnelles de processus stochastiques d'Itô paramétrés proches de ce qu'on rencontre dans les modèles micro-macro de fluides polymériques, avec une variable de contrôle pour en réduire la variance. Dans chaque application, le but de l'approche bases-réduites est d'accélérer les calculs sans perte de précision / In a first part, we study numerical schemes using the finite-element method to discretize the Oldroyd-B system of equations, modelling a viscoelastic fluid under no flow boundary condition in a 2- or 3- dimensional bounded domain. The goal is to get schemes which are stable in the sense that they dissipate a free-energy, mimicking that way thermodynamical properties of dissipation similar to those actually identified for smooth solutions of the continuous model. This study adds to numerous previous ones about the instabilities observed in the numerical simulations of viscoelastic fluids (in particular those known as High Weissenberg Number Problems). To our knowledge, this is the first study that rigorously considers the numerical stability in the sense of an energy dissipation for Galerkin discretizations. In a second part, we adapt and use ideas of a numerical method initially developped in the works of Y. Maday, A.T. Patera et al., the reduced-basis method, in order to efficiently simulate some multiscale models. The principle is to numerically approximate each element of a parametrized family of complicate objects in a Hilbert space through the closest linear combination within the best linear subspace spanned by a few elementswell chosen inside the same parametrized family. We apply this principle to numerical problems linked : to the numerical homogenization of second-order elliptic equations, with two-scale oscillating diffusion coefficients, then ; to the propagation of uncertainty (computations of the mean and the variance) in an elliptic problem with stochastic coefficients (a bounded stochastic field in a boundary condition of third type), last ; to the Monte-Carlo computation of the expectations of numerous parametrized random variables, in particular functionals of parametrized Itô stochastic processes close to what is encountered in micro-macro models of polymeric fluids, with a control variate to reduce its variance. In each application, the goal of the reduced-basis approach is to speed up the computations without any loss of precision
|
Page generated in 0.0507 seconds