• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 5
  • Tagged with
  • 23
  • 23
  • 11
  • 10
  • 10
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

縮基法初始值問題之數值研究 / Numerical studies of reduced basis methos for initial value problems

陳揚敏 Unknown Date (has links)
縮基法(RBM) 是對參數化的曲線求逼近解的一個方法,基本上乃使用投影法將解曲線投射到解空間的一子空間中,如此一來,可將原問題轉換成一較小的系統,並經由數值計算出小系統的解,來求得大系統的一逼近解。在本篇論文中主要的乃探討RBM在常微分方程組初始值問題上的應用,並發展一套含有誤差控制的演算法。 本篇論文中所採用的ODE Solver 乃由Gordon 和Shampine 基於Adams PECE方法所發展的。在求解的過程中,對於計算解誤差的控制我們除了利用ODE Solver 的誤差估計,另外我們又發展對縮基解(reduced basis solution) 的後(Aposteriori) 誤差估計,以確保數值計算解的準確性。我們所考慮使用的子空間有三種Taylor, Lagrange , Hermite 。同時為了要增加數值的特定性及簡化小系統的求解工作,我們先行將子空間的基底直交化。因此,除了誤差的控制外,我們也討論了roundoff error 對向量直交化及形成小系統時所造成的影響,並設立誤差標準以判別何時誤差過大到嚴重影響縮基解的準確度。 本篇論文的目的是希望利用RBM發展出一套解常微分方程組初始值問題的求算法,以期計算解能在較短的時間內準確的被計算出來。 / The reduced basis method(RBM) is a scheme for approximating parametric solution curves. The basic technique of RBM is projection. By applying the method, we can find an approximate solution of the original system which satisfies a system of smaller size. In this paper, we mainly concern the applications of RBM for ODE initial value problems and develop an algorithm which contains a set of error controls. The ODE solver used in this paper is developed by Gordon and Shampine based on Adams PECE formulas. To assure the accuracy of the reduced basis approximation, we set up an appropriate automatic error control in calling GS solver and develop an a posteriori error estimate to keep the reduction error under control. The subspaces considered are Taylor, Lagrange and Hermite subspaces.In the meantime, in order to improve the numerical stability and simplify the computation of the reduced basis solution, we orthogonalize the generators of reduced subspaces. We also discuss the roundoff errors in the orthogonalization process and build up a criterion for identifying the case the accuracy of the reduced basis solution up a criterion for identifying the case the accuracy of the reduced basis solution is destroyed by the errors. The aim of this paper is to develop an algorithm to solve the ODE initial value problems efficiently.
2

Reduced-Basis Output Bound Methods for Parametrized Partial Differential Equations

Prud'homme, C., Rovas, D.V., Veroy, K., Machiels, L., Maday, Y., Patera, Anthony T., Turinici, G. 01 1900 (has links)
We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential components are (i) (provably) rapidly convergent global reduced-basis approximations -- Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N selected points in parameter space; (ii) a posteriori error estimation -- relaxations of the error-residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs of interest; and (iii) off-line/on-line computational procedures -- methods which decouple the generation and projection stages of the approximation process. The operation count for the on-line stage -- in which, given a new parameter value, we calculate the output of interest and associated error bound -- depends only on N (typically very small) and the parametric complexity of the problem; the method is thus ideally suited for the repeated and rapid evaluations required in the context of parameter estimation, design, optimization, and real-time control. / Singapore-MIT Alliance (SMA)
3

Contributions mathématiques aux calculs de structures électroniques / Mathematical contributions to the calculations of electronic structures

Gontier, David 28 September 2015 (has links)
Cette thèse comprend trois sujets différents, tous en rapport à des problèmes de structures électroniques. Ces trois sujets sont présentés dans trois parties indépendantes.Cette thèse commence par une introduction générale présentant les problématiques et les principaux résultats.La première partie traite de la théorie de la fonctionnelle de la densité lorsqu'elle est appliquée aux modèles d'électrons avec spins polarisés. Cette partie est divisée en deux chapitres. Dans le premier de ces chapitres, nous introduisons la notion de N-représentabilité, et nous caractérisons les ensembles de matrices de densité de spin représentables. Dans le second chapitre, nous montrons comment traiter mathématiquement le terme de Zeeman qui apparaît dans les modèles comprenant une polarisation de spin. Le résultat d'existence qui est démontré dans (Anantharaman, Cancès 2009) pour des systèmes de Kohn-Sham sans polarisation de spin est étendu au cas des systèmes avec polarisation de spin.Dans la seconde partie, nous étudions l'approximation GW. Dans un premier temps, nous donnons une définition mathématique de la fonction de Green à un corps, et nous expliquons comment les énergies d'excitation des molécules peuvent être obtenues à partir de cette fonction de Green. La fonction de Green peut être numériquement approchée par la résolution des équations GW. Nous discutons du caractère bien posé de ces équations, et nous démontrons que les équations GW0 sont bien posées dans un régime perturbatif. Ce travail a été effectué en collaboration avec Eric Cancès et Gabriel Stoltz.Dans le troisième et dernière partie, nous analysons des méthodes numériques pour calculer les diagrammes de bandes de structures cristallines. Cette partie est divisée en deux chapitres. Dans le premier, nous nous intéressons à l'approximation de Hartree-Fock réduite (voir (Cances, Deleurence, Lewin 2008)). Nous prouvons que si le cristal est un insolant ou un semi-conducteur, alors les calculs réalisés dans des supercellules convergent exponentiellement vite vers la solution exacte lorsque la taille de la supercellule tend vers l'infini. Ce travail a été réalisé en collaboration avec Salma Lahbabi. Dans le dernier chapitre, nous présentons une nouvelle méthode numérique pour le calcul des diagrammes de bandes de cristaux (qui peuvent être aussi bien isolants que conducteurs). Cette méthode utilise la technique des bases réduites, et accélère les méthodes traditionnelles. Ce travail a été fait en collaboration avec Eric Cancès, Virginie Ehrlacher et Damiano Lombardi / This thesis contains three different topics, all related to electronic structure problems. These three topics are presented in three independent parts.This thesis begins with a general introduction presenting the problematics and main results.The first part is concerned with Density Functional Theory (DFT), for spin-polarized models. This part is divided in two chapters. In the first of these chapters, the notion of N-representability is introduced and the characterizations of the N-representable sets of spin-density 2X2 matrices are given. In the second chapter, we show how to mathematically treat the Zeeman term in spin-polarized DFT models. The existence of minimizers that was proved in (Anantharaman, Cancès 2009) for spin-unpolarized Kohn-Sham models within the local density approximation is extended to spin-polarized models.The second part of this thesis focuses on the GW approximation. We first give a mathematical definition of the one-body Green's function, and explain why methods based on Green's functions can be used to calculate electronic-excited energies of molecules. One way to compute an approximation of the Green's function is through the self-consistent GW equations. The well-posedness of these equations is discussed, and proved in the GW0 case in a perturbative regime. This is joint work with Eric Cancès and Gabriel Stoltz.In the third and final part, numerical methods to compute band-diagrams of crystalline structure are analyzed. This part is divided in two chapters.In the first one, we consider a perfect crystal in the reduced Hartree-Fock approximation (see (Cances, Deleurence, Lewin 2008)). We prove that, if the crystal is an insulator or a semi-conductor, then supercell calculations converge to the exact solution with an exponential rate of convergence with respect to the size of the supercell. This is joint work with Salma Lahbabi. In the last chapter, we provide a new numerical method to calculate the band diagram of a crystal (which can be either an insulator or a conductor). This method, based on reduced basis techniques, speeds up traditional calculations. This is joint work with Eric Cancès, Virginie Ehrlacher, and Damiano Lombardi
4

Real-Time Optimal Parametric Design of a Simple Infiltration-Evaporation Model Using the Assess-Predict-Optimize (APO) Strategy

Ali, S., Damodaran, Murali, Patera, Anthony T. 01 1900 (has links)
Optimal parametric design of a system must be able to respond quickly to short term needs as well as long term conditions. To this end, we present an Assess-Predict-Optimize (APO) strategy which allows for easy modification of a system’s characteristics and constraints, enabling quick design adaptation. There are three components to the APO strategy: Assess - extract necessary information from given data; Predict - predict future behavior of system; and Optimize – obtain optimal system configuration based on information from the other components. The APO strategy utilizes three key mathematical ingredients to yield real-time results which would certainly conform to given constraints: dimension reduction of the model, a posteriori error estimation, and optimization methods. The resulting formulation resembles a bilevel optimization problem with an inherent nonconvexity in the inner level. Using a simple infiltration-evaporation model to simulate an irrigation system, we demonstrate the APO strategy’s ability to yield real-time optimal results. The linearized model, described by a coercive elliptic partial differential equation, is discretized by the reduced-basis output bounds method. A primal-dual interior point method is then chosen to solve the resulting APO problem. / Singapore-MIT Alliance (SMA)
5

Identification of Convection Constants for Electronic Packages Using Modified Genetic Algorithm and Reduced-Basis Method

Yang, Zhenglin, Lee, Jung Hong, Liu, Guirong, Patera, Anthony T., Lam, Khin Yong 01 1900 (has links)
A new inverse analysis method is presented to identify parameters of heat convection in microelectronic packages. This approach adopts a modified Micro Genetic Algorithm (µGA) in finding the global optimum of parameters. A reduced-basis approach is introduced in the forward heat transfer analysis so as to significantly improve the efficiency in the calculation. Different identification procedures are employed to identify heat convection coefficients of a typical microelectronic package. Comparisons between different algorithms are performed. Results show that the use of the reduced-basis method together with the modified µGA outperforms the conventional GAs significantly. The presented method of coefficient identification is ideal for practical applications. It is efficient enough even for online analysis of both forward and inverse problem. / Singapore-MIT Alliance (SMA)
6

Reliable Real-Time Solution of Parametrized Elliptic Partial Differential Equations: Application to Elasticity

Veroy, K., Leurent, T., Prud'homme, C., Rovas, D.V., Patera, Anthony T. 01 1900 (has links)
The optimization, control, and characterization of engineering components or systems require fast, repeated, and accurate evaluation of a partial-differential-equation-induced input-output relationship. We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic partial differential equations with affine parameter dependence. The method has three components: (i) rapidly convergent reduced{basis approximations; (ii) a posteriori error estimation; and (iii) off-line/on-line computational procedures. These components -- integrated within a special network architecture -- render partial differential equation solutions truly "useful": essentially real{time as regards operation count; "blackbox" as regards reliability; and directly relevant as regards the (limited) input-output data required. / Singapore-MIT Alliance (SMA)
7

Real-Time Reliable Prediction of Linear-Elastic Mode-I Stress Intensity Factors for Failure Analysis

Huynh, Dinh Bao Phuong, Peraire, Jaime, Patera, Anthony T., Liu, Guirong 01 1900 (has links)
Modern engineering analysis requires accurate, reliable and efficient evaluation of outputs of interest. These outputs are functions of "input" parameter that serve to describe a particular configuration of the system, typical input geometry, material properties, or boundary conditions and loads. In many cases, the input-output relationship is a functional of the field variable - which is the solution to an input-parametrized partial differential equations (PDE). The reduced-basis approximation, adopting off-line/on-line computational procedures, allows us to compute accurate and reliable functional outputs of PDEs with rigorous error estimations. The operation count for the on-line stage depends only on a small number N and the parametric complexity of the problem, which make the reduced-basis approximation especially suitable for complex analysis such as optimizations and designs. In this work we focus on the development of finite-element and reduced-basis methodology for the accurate, fast, and reliable prediction of the stress intensity factors or strain-energy release rate of a mode-I linear elastic fracture problem. With the use of off-line/on-line computational strategy, the stress intensity factor for a particular problem can be obtained in miliseconds. The method opens a new promising prospect: not only are the numerical results obtained only in miliseconds with great savings in computational time; the results are also reliable - thanks to the rigorous and sharp a posteriori error bounds. The practical uses of our prediction are presented through several example problems. / Singapore-MIT Alliance (SMA)
8

Contributions mathématiques aux calculs de structures électroniques / Mathematical contributions to the calculations of electronic structures

Gontier, David 28 September 2015 (has links)
Cette thèse comprend trois sujets différents, tous en rapport à des problèmes de structures électroniques. Ces trois sujets sont présentés dans trois parties indépendantes.Cette thèse commence par une introduction générale présentant les problématiques et les principaux résultats.La première partie traite de la théorie de la fonctionnelle de la densité lorsqu'elle est appliquée aux modèles d'électrons avec spins polarisés. Cette partie est divisée en deux chapitres. Dans le premier de ces chapitres, nous introduisons la notion de N-représentabilité, et nous caractérisons les ensembles de matrices de densité de spin représentables. Dans le second chapitre, nous montrons comment traiter mathématiquement le terme de Zeeman qui apparaît dans les modèles comprenant une polarisation de spin. Le résultat d'existence qui est démontré dans (Anantharaman, Cancès 2009) pour des systèmes de Kohn-Sham sans polarisation de spin est étendu au cas des systèmes avec polarisation de spin.Dans la seconde partie, nous étudions l'approximation GW. Dans un premier temps, nous donnons une définition mathématique de la fonction de Green à un corps, et nous expliquons comment les énergies d'excitation des molécules peuvent être obtenues à partir de cette fonction de Green. La fonction de Green peut être numériquement approchée par la résolution des équations GW. Nous discutons du caractère bien posé de ces équations, et nous démontrons que les équations GW0 sont bien posées dans un régime perturbatif. Ce travail a été effectué en collaboration avec Eric Cancès et Gabriel Stoltz.Dans le troisième et dernière partie, nous analysons des méthodes numériques pour calculer les diagrammes de bandes de structures cristallines. Cette partie est divisée en deux chapitres. Dans le premier, nous nous intéressons à l'approximation de Hartree-Fock réduite (voir (Cances, Deleurence, Lewin 2008)). Nous prouvons que si le cristal est un insolant ou un semi-conducteur, alors les calculs réalisés dans des supercellules convergent exponentiellement vite vers la solution exacte lorsque la taille de la supercellule tend vers l'infini. Ce travail a été réalisé en collaboration avec Salma Lahbabi. Dans le dernier chapitre, nous présentons une nouvelle méthode numérique pour le calcul des diagrammes de bandes de cristaux (qui peuvent être aussi bien isolants que conducteurs). Cette méthode utilise la technique des bases réduites, et accélère les méthodes traditionnelles. Ce travail a été fait en collaboration avec Eric Cancès, Virginie Ehrlacher et Damiano Lombardi / This thesis contains three different topics, all related to electronic structure problems. These three topics are presented in three independent parts.This thesis begins with a general introduction presenting the problematics and main results.The first part is concerned with Density Functional Theory (DFT), for spin-polarized models. This part is divided in two chapters. In the first of these chapters, the notion of N-representability is introduced and the characterizations of the N-representable sets of spin-density 2X2 matrices are given. In the second chapter, we show how to mathematically treat the Zeeman term in spin-polarized DFT models. The existence of minimizers that was proved in (Anantharaman, Cancès 2009) for spin-unpolarized Kohn-Sham models within the local density approximation is extended to spin-polarized models.The second part of this thesis focuses on the GW approximation. We first give a mathematical definition of the one-body Green's function, and explain why methods based on Green's functions can be used to calculate electronic-excited energies of molecules. One way to compute an approximation of the Green's function is through the self-consistent GW equations. The well-posedness of these equations is discussed, and proved in the GW0 case in a perturbative regime. This is joint work with Eric Cancès and Gabriel Stoltz.In the third and final part, numerical methods to compute band-diagrams of crystalline structure are analyzed. This part is divided in two chapters.In the first one, we consider a perfect crystal in the reduced Hartree-Fock approximation (see (Cances, Deleurence, Lewin 2008)). We prove that, if the crystal is an insulator or a semi-conductor, then supercell calculations converge to the exact solution with an exponential rate of convergence with respect to the size of the supercell. This is joint work with Salma Lahbabi. In the last chapter, we provide a new numerical method to calculate the band diagram of a crystal (which can be either an insulator or a conductor). This method, based on reduced basis techniques, speeds up traditional calculations. This is joint work with Eric Cancès, Virginie Ehrlacher, and Damiano Lombardi
9

Reliable Real-Time Optimization of Nonconvex Systems Described by Parametrized Partial Differential Equations

Oliveira, I.B., Patera, Anthony T. 01 1900 (has links)
The solution of a single optimization problem often requires computationally-demanding evaluations; this is especially true in optimal design of engineering components and systems described by partial differential equations. We present a technique for the rapid and reliable optimization of systems characterized by linear-functional outputs of partial differential equations with affine parameter dependence. The critical ingredients of the method are: (i) reduced-basis techniques for dimension reduction in computational requirements; (ii) an "off-line/on-line" computational decomposition for the rapid calculation of outputs of interest and respective sensitivities in the limit of many queries; (iii) a posteriori error bounds for rigorous uncertainty and feasibility control; (iv) Interior Point Methods (IPMs) for efficient solution of the optimization problem; and (v) a trust-region Sequential Quadratic Programming (SQP) interpretation of IPMs for treatment of possibly non-convex costs and constraints. / Singapore-MIT Alliance (SMA)
10

Mathematical modelling and numerical simulation in materials science

Boyaval, Sébastien 16 December 2009 (has links) (PDF)
In a first part, we study numerical schemes using the finite-element method to discretize the Oldroyd-B system of equations, modelling a viscoelastic fluid under no flow boundary condition in a 2- or 3- dimensional bounded domain. The goal is to get schemes which are stable in the sense that they dissipate a free-energy, mimicking that way thermodynamical properties of dissipation similar to those actually identified for smooth solutions of the continuous model. This study adds to numerous previous ones about the instabilities observed in the numerical simulations of viscoelastic fluids (in particular those known as High Weissenberg Number Problems). To our knowledge, this is the first study that rigorously considers the numerical stability in the sense of an energy dissipation for Galerkin discretizations. In a second part, we adapt and use ideas of a numerical method initially developped in the works of Y. Maday, A.T. Patera et al., the reduced-basis method, in order to efficiently simulate some multiscale models. The principle is to numerically approximate each element of a parametrized family of complicate objects in a Hilbert space through the closest linear combination within the best linear subspace spanned by a few elementswell chosen inside the same parametrized family. We apply this principle to numerical problems linked : to the numerical homogenization of second-order elliptic equations, with two-scale oscillating diffusion coefficients, then ; to the propagation of uncertainty (computations of the mean and the variance) in an elliptic problem with stochastic coefficients (a bounded stochastic field in a boundary condition of third type), last ; to the Monte-Carlo computation of the expectations of numerous parametrized random variables, in particular functionals of parametrized Itô stochastic processes close to what is encountered in micro-macro models of polymeric fluids, with a control variate to reduce its variance. In each application, the goal of the reduced-basis approach is to speed up the computations without any loss of precision

Page generated in 0.0573 seconds