• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 143
  • 32
  • 24
  • 22
  • 16
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 298
  • 298
  • 68
  • 30
  • 26
  • 25
  • 25
  • 24
  • 24
  • 22
  • 22
  • 21
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Label-free mapping of near-field transport properties of micro/nano-fluidic phenomena using surface plasmon resonance (SPR) reflectance imaging

Kim, Iltai 01 December 2008 (has links)
My doctoral research has focused on the development of surface plasmon resonance (SPR) reflectance imaging technique to detect near-field transport properties such as concentration, temperature, and salinity in micro/nano fluidic phenomena in label-free, real-time, and full-field manner. A label-free visualization technique based on surface plasmon resonance (SPR) reflectance sensing is presented for real-time and full-field mapping of microscale concentration and temperature fields. The key idea is that the SPR reflectance sensitivity varies with the refractive index of the near-wall region of the test mixture fluid. The Fresnel equation, based on Kretschmann’s theory, correlates the SPR reflectance with the refractive index of the test medium, and then, the refractive index correlates with the mixture concentration or temperature. The basic operation principle is summarized and the laboratory-developed SPR imaging/analyzing system is described with the measurement sensitivity, uncertainties and detection limitations of the implemented SPR reflectance imaging. Total five proposed uses of SPR reflectance imaging technique are presented: (1) micromixing concentration field development of ethanol penetrating into water contained in a micro-channel, (2) full-field detection of the near-wall salinity profiles for convective/diffusion of saline droplet into water, (3) full-field and real-time surface plasmon resonance imaging thermometry, (4) correlation of near-field refractive index of nanofluids with surface plasmon resonance reflectance, and (5) unveiling hidden complex cavities formed during nanocrystalline self-assembly.
192

Electro-Optical Na0.5K0.5NbO3 Films

Blomqvist, Mats January 2005 (has links)
Ferroelectric oxides are a group of advanced electronic materials with a wide variety of properties useful in applications such as memory devices, resonators and filters, infrared sensors, microelectromechanical systems, and optical waveguides and modulators. Among the oxide perovskite-structured ferroelectric thin film materials, sodium potassium niobate or Na0.5K0.5NbO3 (NKN) has recently emerged as one of the most promising materials in radio frequency (rf) and microwave applications due to high dielectric tenability and low dielectric loss. This thesis presents results on growth and structural, optical, and electrical characterization of NKN thin films. The films were deposited by rf-magnetron sputtering of a stoichiometric, high density, ceramic Na0.5K0.5NbO3 target onto single crystal LaAlO3 (LAO), Al2O3 (sapphire), SrTiO3, and Nd:YAlO3, and polycrystalline Pt80Ir20 substrates. By x-ray diffractometry, NKN films on c-axis oriented LaAlO3, SrTiO3 and Nd:YAlO3 substrates were found to grow epitaxially, whereas films on r-cut sapphire and polycrystalline Pt80Ir20 substrates were found to be preferentially (00l) oriented. The surface morphology was explored using atomic force microscopy. Optical and waveguiding properties of the Na0.5K0.5NbO3/substrate heterostructures were characterized using prism-coupling technique. Sharp and distinguishable transverse magnetic and electric propagation modes were observed for NKN thicknesses up to 2.0 μm. The extraordinary and ordinary refractive indices were calculated together with the birefringence of the NKN material. The electro-optic effect in transverse geometry was measured in transmission, where the effective linear electro-optic response was determined to reff = 28 pm/V for NKN/Al2O3 with an applied dc field up to 18 kV/cm. The ferroelectric state in NKN films on Pt80Ir20 at room temperature was indicated by a polarization loop with saturated polarization as high as 33.4 μC/cm2 at 700 kV/cm, remnant polarization of 10 μC/cm2, and coercive field of 90 kV/cm. Current-voltage characteristics of vertical Au/NKN/PtIr capacitive cells and planar Au/NKN/LAO interdigital capacitors (IDCs) showed very good insulating properties, with the leakage current density for an NKN IDC on the order of 30 nA/cm2 at 400 kV/cm. Rf dielectric spectroscopy demonstrated low loss, low frequency dispersion, and high voltage tunability. At 1 MHz, NKN/LAO showed a dissipation factor tan δ = 0.010 and a tunability of 16.5 % at 200 kV/cm. For the same structure the frequency dispersion was Δεr = 8.5 % between 1 kHz and 1 MHz. / QC 20100928
193

Microwave Devices and Antennas Based on Negative-refractive-index Transmission-line Metamaterials

Antoniades, Marc A. 23 September 2009 (has links)
Several microwave devices and antennas that are based on negative-refractive-index transmission-line (NRI-TL) metamaterials are presented in this thesis, which exhibit superior performance features compared to their conventional counterparts. These are a Wilkinson balun, a 1:4 series power divider, a four-element printed dipole array, a leaky-wave antenna, and an electrically small folded-monopole antenna. The Wilkinson balun employs +90° and −90° NRI-TL metamaterial lines at the output branches of a Wilkinson divider, to achieve a six-fold increase in the measured differential output phase bandwidth compared to that of an analogous balun employing transmission lines, while occupying only 55% of the area. The 1:4 series power divider comprises four non-radiating 0° NRI-TL metamaterial lines, each with a compact length of λ0/8, to provide equal power split to all four output ports. Compared to a conventional series power divider employing one-wavelength long transmission lines, the metamaterial divider provides a 154% increase in the measured through-power bandwidth, while occupying only 54% of the area. The metamaterial series power dividing concept is also applied to a four-element fully-printed dipole array that is designed to radiate at broadside, in order to demonstrate that the array exhibits reduced beam squinting characteristics. It is shown that the metamaterial-fed array has a measured scan-angle bandwidth that is 173% greater than an array that is fed using a conventional low-pass loaded line. The reduced-beam squinting property that NRI-TL metamaterial lines offer is subsequently exploited to create a leaky-wave antenna that radiates a near-fixed beam in the forward +45° direction, with an average measured beam squint of only 0.031°/MHz. This is achieved by operating the antenna in the upper right-handed band where the phase and group velocities are the closest to the speed of light. Finally, an electrically small antenna comprising four 0° NRI-TL metamaterial unit cells is presented which supports a predominantly even-mode current, thus enabling it to be modeled as a multi-arm folded monopole. This significantly increases its radiation resistance, which allows it to be matched to 50 Ω, while maintaining a high measured efficiency of 70%.
194

Microwave Devices and Antennas Based on Negative-refractive-index Transmission-line Metamaterials

Antoniades, Marc A. 23 September 2009 (has links)
Several microwave devices and antennas that are based on negative-refractive-index transmission-line (NRI-TL) metamaterials are presented in this thesis, which exhibit superior performance features compared to their conventional counterparts. These are a Wilkinson balun, a 1:4 series power divider, a four-element printed dipole array, a leaky-wave antenna, and an electrically small folded-monopole antenna. The Wilkinson balun employs +90° and −90° NRI-TL metamaterial lines at the output branches of a Wilkinson divider, to achieve a six-fold increase in the measured differential output phase bandwidth compared to that of an analogous balun employing transmission lines, while occupying only 55% of the area. The 1:4 series power divider comprises four non-radiating 0° NRI-TL metamaterial lines, each with a compact length of λ0/8, to provide equal power split to all four output ports. Compared to a conventional series power divider employing one-wavelength long transmission lines, the metamaterial divider provides a 154% increase in the measured through-power bandwidth, while occupying only 54% of the area. The metamaterial series power dividing concept is also applied to a four-element fully-printed dipole array that is designed to radiate at broadside, in order to demonstrate that the array exhibits reduced beam squinting characteristics. It is shown that the metamaterial-fed array has a measured scan-angle bandwidth that is 173% greater than an array that is fed using a conventional low-pass loaded line. The reduced-beam squinting property that NRI-TL metamaterial lines offer is subsequently exploited to create a leaky-wave antenna that radiates a near-fixed beam in the forward +45° direction, with an average measured beam squint of only 0.031°/MHz. This is achieved by operating the antenna in the upper right-handed band where the phase and group velocities are the closest to the speed of light. Finally, an electrically small antenna comprising four 0° NRI-TL metamaterial unit cells is presented which supports a predominantly even-mode current, thus enabling it to be modeled as a multi-arm folded monopole. This significantly increases its radiation resistance, which allows it to be matched to 50 Ω, while maintaining a high measured efficiency of 70%.
195

Three-Dimensional Optical Characterization of Heterogeneous Polymer Systems

Li, Zhi 28 June 2004 (has links)
In order to truly understand the process-property behavior of polymer systems it is essential to identify the three dimensional structure of the materials fabricated. For heterogeneous polymer systems such as nanoparticle filled systems, determination of the three dimensional optical properties are particularly difficult. Such information is essential, however, if the behavior of these systems are to be understood and formalized. The purpose of the present research was to develop methods for measuring the optical characteristics of heterogeneous polymer systems nondestructively, in order to characterize their three dimensional behavior. The thesis contains three parts: Part A: Study of an Oriented Uniformly Distributed System: Stretched Isotactic Polypropylene- nano Carbon Black Films (IPP-CB). Three nondestructive optical methods: optical waveguide coupling, Fourier Transform Infrared (FTIR) spectroscopy and x-ray diffraction, were used to investigate the effect of the carbon black on the phase behavior and orientation of the films. It was found that the carbon black has little effect on the crystal form and crystallinity, but has a significant effect on the three dimensional orientation behavior of the polypropylene in the IPP-CB systems. Part B: Study of a non-Uniformly Distributed System: Compression Molded Poly (Methyl Methacrylate) with Nano Indium Tin Oxide (PMMA-ITO) The PMMA-ITO sample is an un-oriented and non-uniformly mixed system which has a grain structure. A unique Break Point Waveguide Method was developed to deal with this problem. It was found that both the refractive index and the extinction coefficient increased with ITO concentration and the samples were three dimensionally random. Part C: Development of Computational Improvements in System Operations Four methods were developed to improve the accuracy of the waveguide methods. They are the Bootstrap Method, the Two-Line Method, the Big Area Method and the Modified Knee method. In conclusion, the three dimensional optical characteristics of two different kinds of heterogeneous polymer systems, oriented uniformly distributed IPP-CB films and non-uniformly distributed PMMA-ITO composites, are obtained and their structures evaluated. Further, several new methods were developed to improve the accuracy of the current optical waveguide methods.
196

Optical Properties Of Some Quaternary Thallium Chalcogenides

Goksen, Kadir 01 April 2008 (has links) (PDF)
Optical properties of Tl4In3GaSe8, Tl4InGa3Se8, Tl4In3GaS8, Tl2InGaS4 and Tl4InGa3S8 chain and layered crystals were studied by means of photoluminescence (PL) and transmission-reflection experiments. Several emission bands were observed in the PL spectra within the 475-800 nm wavelength region. The results of the temperature- and excitation intensity-dependent PL measurements in 15-300 K and 0.13&times / 10-3-110.34 W cm-2 ranges, respectively, suggested that the observed bands were originated from the recombination of electrons with the holes by realization of donor-acceptor or free-to-bound type transitions. Transmission-reflection measurements in the wavelength range of 400-1100 nm revealed the values of indirect and direct band gap energies of the crystals studied. By the temperature-dependent transmission measurements in 10-300 K range, the rates of change of the indirect band gap of the samples with temperature were found to be negative. The oscillator and dispersion energies, and zero-frequency refractive indices were determined by the analysis of the refractive index dispersion data using the Wemple&ndash / DiDomenico single-effective-oscillator model. Furthermore, the structural parameters of all crystals were defined by the analysis of X-ray powder diffraction data. The determination of the compositional parameters of the studied crystals was done by energy dispersive spectral analysis experiments.
197

Investigation of high spectral resolution signatures and radiative forcing of tropospheric aerosol in the thermal infrared

Boer, Gregory Jon 15 January 2010 (has links)
An investigation of the high spectral resolution signatures and radiative forcing of tropospheric aerosol in the thermal infrared was conducted. To do so and to support advanced modeling of optical properties, a high spectral resolution library of atmospheric aerosol optical constants was developed. This library includes new optical constants of sulfate-nitrate-ammonium aqueous solutions and the collection of a broad range of existing optical constants for aerosol components, particularly mineral optical constants. The mineral optical constants were used to model and study infrared dust optical signatures as a function of composition, size, shape and mixing state. In particular, spherical and non-spherical optical models of dust particles were examined and compared to high spectral resolution laboratory extinction measurements. Then the performance of some of the most common effective medium approximations for internal mixtures was examined by modeling the optical constants of the newly determined sulfate-nitrate-ammonium mixtures. The optical signature analysis was applied to airborne and satellite high spectral resolution thermal infrared radiance data impacted by Saharan dust events. A new technique to retrieve dust microphysical properties from the dust spectral signature was developed and compared to a standard technique. The microphysics retrieved from this new technique and from a standard technique were then used to investigate the effects of dust on radiative forcing and cooling rates in the thermal IR.
198

Investigation of optical properties of polymethines for potential application in all-optical signal processing

Kim, Hyeongeu 08 June 2015 (has links)
Demonstration of ultrafast all-optical signal processing (AOSP) using silicon as the active material has been limited by large two-photon absorption loss and long lifetimes of the resulting free carriers. For AOSP at speeds in the terahertz, an order of magnitude faster than that the fastest current electronic counterpart, a class of π-conjugated organic molecules called polymethines provides a promising alternative to silicon as they possess large third-order nonlinearities, and ultrafast polarization response to an incident field. The challenge in the application of polymethines as active nonlinear optical materials for AOSP is in translating their promising molecular properties into bulk material properties. The large linear polarizability and charged nature of the polymethines molecules strongly promote aggregation and phase-separation in solid blends, offsetting their advantageous molecular optical properties. In this work, polymethines’ resistance to deleterious spontaneous symmetry breaking and aggregation was enhanced by substitutions of metal- and chalcogen- containing terminal groups, and rigid steric groups above and below the π-conjugated plane of polymethine chain. The resulting polymethines/amorphous polycarbonate (APC) blend films demonstrated an unprecedentedly high two-photon figure-of-merit, |Re(χ(3))/Im(χ(3))| and low linear loss. The optical quality of the polymethines/APC films was also improved by replacing the commonly-used alkyl ammonium counterions with more polarizable aryl phosphonium counterions with moderate ground state dipole moment. The resulting dye-polymer blend films showed an enhanced near-infrared transparency while its magnitude of the third-order susceptibility, |χ(3)|, showed a good agreement with that extrapolated from the molecular third-order polarizability, γ. For facile integration of these promising organic materials into SOH, the substrate surface was functionalized using silane coupling chemistry for the reduction of surface energy mismatch between the polymer films and the waveguide containing substrates. The optical and SEM micrographs showed vastly improved coverage and infiltration of the microfeatures. Furthermore, to enable the precise engineering of waveguide cross-sectional dimensions for single-mode propagation in the organic cladding, the dispersion curves of the polymethines/polymer blends were generated using prism coupling and ellipsometry. The combined efforts in the development of molecules and materials discussed in the thesis have culminated into a successful identification and optimization of the polymethines dyes and their polymer blends for imminent demonstrations of on-chip AOSP at terahertz speed.
199

Heavy metal ion sensors based on organic microcavity lasers

Lozenko, Sergii 04 November 2011 (has links) (PDF)
Monitoring of environmental pollutants present at low concentrations requires creation of miniature, low-cost, and highly sensitive detectors that are capable to specifically identify target substances. In this thesis, a detection approach based on refractive index sensing with polymer micro-lasers is proposed and its application to the detection of heavy metal pollutants in water (mercury - Hg2+, cadmium - Cd2+ and lead - Pb2+) is studied. The resonance frequencies of the microcavity are highly sensitive to the refractive indices of the resonator surrounding: the resonances shift by a small amount when the surface refractive index changes, resulting from the interaction of the mode evanescent field with the surrounding medium. This permits label-free detection by coating the resonator with a suitable recognition species. The originality of this work lies in the utilization of active microcavities, or microlasers, created of the dye-doped polymers. Active microcavities offer an enhanced signal/noise ratio as compared to the passive ones and very narrow resonance peaks even at moderate quality factors (Q &#8805- 6000). The choice of polymers as an active medium is connected with a number of advantages they offer: as opposite to semiconductors, polymers can be easily functionalized, integrated in microfluidic circuits and are cheaper in processing. Moreover, the use of porous polymer matrices may allow accumulation of analyte ions inside the microcavity and thus enhance the sensitivity. Two possible applications of microlasers are investigated in the thesis: refractive index variation sensing with non-functionalized cavities and heavy metal ion detection with functionalized cavities. In the first case, the sensitivity values have been obtained, comparable with the reported in literature for planar passive microresonators. In the second case, the experimental proofs of specific detection of mercury ions in liquid are presented. The ways of sensitivity improvement are discussed and verified and a foundation is layed for the creation of integrated Lab-on-Chip microfluidic biochemical detector.
200

Lūžio rodiklio modifikavimas stikluose ir kristaluose veikiant ultratrumpaisiais lazerio impulsais / Refractive index modification in glasses and crystals with ultrashort laser pulses

Paipulas, Domas 22 November 2011 (has links)
Darbe pristatomi eksperimentiniai bei teoriniai rezultatai, susiję su skaidriųjų terpių lūžio rodiklio pokyčio indukavimu. Parodoma, kad lydytą kvarcą veikiant Yb:KGV lazerine sistema generuojamais impulsais, jame galima sukurti modifikuoto lūžio rodiklio sritis. Šios sritys pasižymi dvejopu šviesos lūžimu, atsirandančiu dėl medžiagos tūryje besiformuojančių nanogardelių, o modifikuotų sričių vienalytiškumas priklauso nuo akumuliacinių efektų. Pakitusio lūžio rodiklio sritis taip pat galima formuoti ir ličio niobato kristale. Priklausomai nuo spinduliuotės parametrų, šiame kristale galima įrašyti stabilius modifikuoto lūžio rodiklio darinius, o taip pat ir nestabilias modifikacijas, atsirandančias dėl fotorefrakcinio reiškinio. Pastarąjį efektą galima panaudoti daugkartiniam informacijos įrašymui. Pademonstruoti efektyvūs fotoniniai elementai, tūrinės Brego gardelės, įrašytos tiek lydyto kvarco, tiek ličio niobato kristalo tūryje. Pateikiama metodika, skirta lazerio indukuoto lūžio rodiklio pokyčiui nustatyti matuojant Brego gardelių difrakcinius efektyvumus. Taip pat tyrinėjama kaip modifikuoti dariniai lemia superkontinuumo ir šviesos gijos formavimosi reiškinius lydytame kvarce. / The study on refractive index modification of transparent materials with ultrashort laser pulses is presented in this dissertation. Based on experimental data it was demonstrated, that using ultrashort pulses, generated with Yb:KGW laser system, it is possible to produce modified refractive index zones in the fused silica glass, that possess birefringence. This effect is caused by nanogratings that form in the bulk of the material. Homogeneity of the modified zones is determined by the accumulation effects, mainly the number of pulses that affect each area. Refractive index variations can be created also in crystalline material such as lithium niobate. Depending on the writing pulse parameters different types of modifications can be created: permanent modification that is caused by crystal amorphization and non-stable modifications that originate from the photorefractive properties of the crystal. Latter modifications can be used for three-dimensional, rewritable data recording. Highly efficient photonic elements, such as volume Bragg gratings, recorded in fused silica and lithium niobate crystal are demonstrated. The technique allowing the evaluation of refractive index change applying Bragg gratings is described. Also modification influence on nonlinear processes that appear in fused silica such as filament formation and supercontinuum generation is experimentally investigated.

Page generated in 0.0807 seconds