Spelling suggestions: "subject:"regenwald"" "subject:"regenwalde""
41 |
Strukturelle Analyse submontaner Vegetation im Südosten Ecuadors /Piechowski, Daniel. January 2008 (has links)
Freie Universiẗat, Diplomarbeit u.d.T.: Piechowski, Daniel: Vegetationsstrukturanalyse unterschiedlich beeinflusster submontaner Regenwälder in Ecuador--Berlin, 2003.
|
42 |
Accessing land at the agricultural frontier a case study from the Honduran MosquitiaBöning, Frank January 2007 (has links)
Zugl.: Berlin, Humboldt-Univ., Diss., 2007
|
43 |
Zielgruppenorientiertes Projektmanagement als Werkzeug der Öffentlichkeitsarbeit von öffentlichen Bibliotheken Konzeption, Durchführung und Evaluation einer Veranstaltungswoche zum Thema Regenwald für Kinder in der Stadtbücherei Biberach/Riß /Krestel, Renate. January 2003 (has links)
Stuttgart, FH, Diplomarb., 2002.
|
44 |
Effects of habitat degradation and fragmentation on the genetic population structure of phytophagous beetles in an African rainforestPatt, Alexandra. Unknown Date (has links) (PDF)
University, Diss., 2004--Bonn.
|
45 |
Climate Change Impacts on Biodiversity - The Setting of a Lingering Global CrisisRinawati, Fitria, Stein, Katharina, Lindner, André 26 March 2013 (has links) (PDF)
Climate change has created potential major threats to global biodiversity. The multiple components of climate change are projected to affect all pillars of biodiversity, from genes over species to biome level. Of particular concerns are "tipping points" where the exceedance of ecosystem thresholds will possibly lead to irreversible shifts of ecosystems and their functioning. As biodiversity underlies all goods and services provided by ecosystems that are crucial for human survival and wellbeing, this paper presents potential effects of climate change on biodiversity, its plausible impacts on human society as well as the setting in addressing a global crisis. Species affected by climate change may respond in three ways: change, move or die. Local species extinctions or a rapidly affected ecosystem as a whole respectively might move toward its particular "tipping point", thereby probably depriving its services to human society and ending up in a global crisis. Urgent and appropriate actions within various scenarios of climate change impacts on biodiversity, especially in tropical regions, are needed to be considered. Foremost a multisectoral approach on biodiversity issues with broader policies, stringent strategies and programs at international, national and local levels is essential to meet the challenges of climate change impacts on biodiversity.
|
46 |
Complex land cover classifications and physical properties retrieval of tropical forests using multi-source remote sensingWijaya, Arief 26 May 2010 (has links) (PDF)
The work presented in this thesis mainly focuses on two subjects related to the application of remote sensing data: (1) for land cover classification combining optical sensor, texture features generated from spectral information and synthetic aperture radar (SAR) features, and (2) to develop a non-destructive approach for above ground biomass (AGB) and forest attributes estimation employing multi-source remote sensing data (i.e. optical data, SAR backscatter) combined with in-situ data. Information provided by reliable land cover map is useful for management of forest resources to support sustainable forest management, whereas the generation of the non-destructive approach to model forest biophysical properties (e.g. AGB and stem volume) is required to assess the forest resources more efficiently and cost-effective, and coupled with remote sensing data the model can be applied over large forest areas. This work considers study sites over tropical rain forest landscape in Indonesia characterized by different successional stages and complex vegetation structure including tropical peatland forests. The thesis begins with a brief introduction and the state of the art explaining recent trends on monitoring and modeling of forest resources using remote sensing data and approach. The research works on the integration of spectral information and texture features for forest cover mapping is presented subsequently, followed by development of a non-destructive approach for AGB and forest parameters predictions and modeling. Ultimately, this work evaluates the potential of mosaic SAR data for AGB modeling and the fusion of optical and SAR data for peatlands discrimination. The results show that the inclusion of geostatistics texture features improved the classification accuracy of optical Landsat ETM data. Moreover, the fusion of SAR and optical data enhanced the peatlands discrimination over tropical peat swamp forest. For forest stand parameters modeling, neural networks method resulted in lower error estimate than standard multi-linear regression technique, and the combination of non-destructive measurement (i.e. stem number) and remote sensing data improved the model accuracy. The up scaling of stem volume and biomass estimates using Kriging method and bi-temporal ETM image also provide favorable estimate results upon comparison with the land cover map. / Die in dieser Dissertation präsentierten Ergebnisse konzentrieren sich hauptsächlich auf zwei Themen mit Bezug zur angewandten Fernerkundung: 1) Der Klassifizierung von Oberflächenbedeckung basierend auf der Verknüpfung von optischen Sensoren, Textureigenschaften erzeugt durch Spektraldaten und Synthetic-Aperture-Radar (SAR) features und 2) die Entwicklung eines nichtdestruktiven Verfahrens zur Bestimmung oberirdischer Biomasse (AGB) und weiterer Waldeigenschaften mittels multi-source Fernerkundungsdaten (optische Daten, SAR Rückstreuung) sowie in-situ Daten. Eine zuverlässige Karte der Landbedeckung dient der Unterstützung von nachhaltigem Waldmanagement, während eine nichtdestruktive Herangehensweise zur Modellierung von biophysikalischen Waldeigenschaften (z.B. AGB und Stammvolumen) für eine effiziente und kostengünstige Beurteilung der Waldressourcen notwendig ist. Durch die Kopplung mit Fernerkundungsdaten kann das Modell auf große Waldflächen übertragen werden. Die vorliegende Arbeit berücksichtigt Untersuchungsgebiete im tropischen Regenwald Indonesiens, welche durch verschiedene Regenerations- und Sukzessionsstadien sowie komplexe Vegetationsstrukturen, inklusive tropischer Torfwälder, gekennzeichnet sind. Am Anfang der Arbeit werden in einer kurzen Einleitung der Stand der Forschung und die neuesten Forschungstrends in der Überwachung und Modellierung von Waldressourcen mithilfe von Fernerkundungsdaten dargestellt. Anschließend werden die Forschungsergebnisse der Kombination von Spektraleigenschaften und Textureigenschaften zur Waldbedeckungskartierung erläutert. Desweiteren folgen Ergebnisse zur Entwicklung eines nichtdestruktiven Ansatzes zur Vorhersage und Modellierung von AGB und Waldeigenschaften, zur Auswertung von Mosaik- SAR Daten für die Modellierung von AGB, sowie zur Fusion optischer mit SAR Daten für die Identifizierung von Torfwäldern. Die Ergebnisse zeigen, dass die Einbeziehung von geostatistischen Textureigenschaften die Genauigkeit der Klassifikation von optischen Landsat ETM Daten gesteigert hat. Desweiteren führte die Fusion von SAR und optischen Daten zu einer Verbesserung der Unterscheidung zwischen Torfwäldern und tropischen Sumpfwäldern. Bei der Modellierung der Waldparameter führte die Neural-Network-Methode zu niedrigeren Fehlerschätzungen als die multiple Regressions. Die Kombination von nichtdestruktiven Messungen (z.B. Stammzahl) und Fernerkundungsdaten führte zu einer Steigerung der Modellgenauigkeit. Die Hochskalierung des Stammvolumens und Schätzungen der Biomasse mithilfe von Kriging und bi-temporalen ETM Daten lieferten positive Schätzergebnisse im Vergleich zur Landbedeckungskarte.
|
47 |
Rainfall partitioning in differently used montane rainforests of Central Sulawesi, Indonesia / Niederschlagsaufteilung in verschieden genutzten montanen Regenwäldern Zentralsulawesis, IndonesienDietz, Johannes 31 January 2007 (has links)
No description available.
|
48 |
Auswirkungen von ENSO-Trockenperioden und Landnutzungspraktiken auf die Dynamik von C, N und P in einem tropischen Regenwald und in Agroforst-Systemen in Zentral-Sulawesi, Indonesien / Effects of ENSO droughts and land-use practices on soil C, N, P dynamics in a tropical rainforest and agroforestry systems in Central Sulawesi, IndonesiaLeitner, Daniela 25 January 2010 (has links)
No description available.
|
49 |
Economic modeling of agricultural land-use patterns in forest frontier areas : theory, empirical assessment and policy implications for Central Sulawesi, Indonesia /Maertens, Miet. January 2003 (has links) (PDF)
Univ., Diss.--Göttingen, 2003. / Zsfassung in dt. Sprache.
|
50 |
Complex land cover classifications and physical properties retrieval of tropical forests using multi-source remote sensingWijaya, Arief 30 April 2010 (has links)
The work presented in this thesis mainly focuses on two subjects related to the application of remote sensing data: (1) for land cover classification combining optical sensor, texture features generated from spectral information and synthetic aperture radar (SAR) features, and (2) to develop a non-destructive approach for above ground biomass (AGB) and forest attributes estimation employing multi-source remote sensing data (i.e. optical data, SAR backscatter) combined with in-situ data. Information provided by reliable land cover map is useful for management of forest resources to support sustainable forest management, whereas the generation of the non-destructive approach to model forest biophysical properties (e.g. AGB and stem volume) is required to assess the forest resources more efficiently and cost-effective, and coupled with remote sensing data the model can be applied over large forest areas. This work considers study sites over tropical rain forest landscape in Indonesia characterized by different successional stages and complex vegetation structure including tropical peatland forests. The thesis begins with a brief introduction and the state of the art explaining recent trends on monitoring and modeling of forest resources using remote sensing data and approach. The research works on the integration of spectral information and texture features for forest cover mapping is presented subsequently, followed by development of a non-destructive approach for AGB and forest parameters predictions and modeling. Ultimately, this work evaluates the potential of mosaic SAR data for AGB modeling and the fusion of optical and SAR data for peatlands discrimination. The results show that the inclusion of geostatistics texture features improved the classification accuracy of optical Landsat ETM data. Moreover, the fusion of SAR and optical data enhanced the peatlands discrimination over tropical peat swamp forest. For forest stand parameters modeling, neural networks method resulted in lower error estimate than standard multi-linear regression technique, and the combination of non-destructive measurement (i.e. stem number) and remote sensing data improved the model accuracy. The up scaling of stem volume and biomass estimates using Kriging method and bi-temporal ETM image also provide favorable estimate results upon comparison with the land cover map. / Die in dieser Dissertation präsentierten Ergebnisse konzentrieren sich hauptsächlich auf zwei Themen mit Bezug zur angewandten Fernerkundung: 1) Der Klassifizierung von Oberflächenbedeckung basierend auf der Verknüpfung von optischen Sensoren, Textureigenschaften erzeugt durch Spektraldaten und Synthetic-Aperture-Radar (SAR) features und 2) die Entwicklung eines nichtdestruktiven Verfahrens zur Bestimmung oberirdischer Biomasse (AGB) und weiterer Waldeigenschaften mittels multi-source Fernerkundungsdaten (optische Daten, SAR Rückstreuung) sowie in-situ Daten. Eine zuverlässige Karte der Landbedeckung dient der Unterstützung von nachhaltigem Waldmanagement, während eine nichtdestruktive Herangehensweise zur Modellierung von biophysikalischen Waldeigenschaften (z.B. AGB und Stammvolumen) für eine effiziente und kostengünstige Beurteilung der Waldressourcen notwendig ist. Durch die Kopplung mit Fernerkundungsdaten kann das Modell auf große Waldflächen übertragen werden. Die vorliegende Arbeit berücksichtigt Untersuchungsgebiete im tropischen Regenwald Indonesiens, welche durch verschiedene Regenerations- und Sukzessionsstadien sowie komplexe Vegetationsstrukturen, inklusive tropischer Torfwälder, gekennzeichnet sind. Am Anfang der Arbeit werden in einer kurzen Einleitung der Stand der Forschung und die neuesten Forschungstrends in der Überwachung und Modellierung von Waldressourcen mithilfe von Fernerkundungsdaten dargestellt. Anschließend werden die Forschungsergebnisse der Kombination von Spektraleigenschaften und Textureigenschaften zur Waldbedeckungskartierung erläutert. Desweiteren folgen Ergebnisse zur Entwicklung eines nichtdestruktiven Ansatzes zur Vorhersage und Modellierung von AGB und Waldeigenschaften, zur Auswertung von Mosaik- SAR Daten für die Modellierung von AGB, sowie zur Fusion optischer mit SAR Daten für die Identifizierung von Torfwäldern. Die Ergebnisse zeigen, dass die Einbeziehung von geostatistischen Textureigenschaften die Genauigkeit der Klassifikation von optischen Landsat ETM Daten gesteigert hat. Desweiteren führte die Fusion von SAR und optischen Daten zu einer Verbesserung der Unterscheidung zwischen Torfwäldern und tropischen Sumpfwäldern. Bei der Modellierung der Waldparameter führte die Neural-Network-Methode zu niedrigeren Fehlerschätzungen als die multiple Regressions. Die Kombination von nichtdestruktiven Messungen (z.B. Stammzahl) und Fernerkundungsdaten führte zu einer Steigerung der Modellgenauigkeit. Die Hochskalierung des Stammvolumens und Schätzungen der Biomasse mithilfe von Kriging und bi-temporalen ETM Daten lieferten positive Schätzergebnisse im Vergleich zur Landbedeckungskarte.
|
Page generated in 0.028 seconds