Spelling suggestions: "subject:"egular graph"" "subject:"egular raph""
11 |
Decomposição de grafos em caminhos / Decomposition of graphs into pathsFábio Happ Botler 24 February 2016 (has links)
Uma decomposição de um grafo G é um conjunto D = {H_1,... , H_k } de subgrafos de G dois-a-dois aresta-disjuntos que cobre o conjunto das arestas de G. Se H_i é isomorfo a um grafo fixo H, para 1<=i<=k, então dizemos que D é uma H-decomposição de G. Neste trabalho, estudamos o caso em que H é um caminho de comprimento fixo. Para isso, primeiramente decompomos o grafo dado em trilhas, e depois fazemos uso de um lema de desemaranhamento, que nos permite transformar essa decomposição em trilhas numa decomposição somente em caminhos. Com isso, obtemos resultados para três conjecturas sobre H-decomposição de grafos no caso em que H=P_\\ell é o caminho de comprimento \\ell. Dois desses resultados resolvem versões fracas das Conjecturas de Kouider e Lonc (1999) e de Favaron, Genest e Kouider (2010), ambas para grafos regulares. Provamos que, para todo inteiro positivo \\ell, (i) existe um inteiro positivo m_0 tal que se G é um grafo 2m\\ell-regular com m>=m_0, então G admite uma P_\\ell-decomposição; (ii) se \\ell é ímpar, existe um inteiro positivo m_0 tal que se G é um grafo m\\ell-regular com m>=m_0, e G contém um m-fator, então G admite uma P_\\ell-decomposição. O terceiro resultado diz respeito a grafos altamente aresta- conexos: existe um inteiro positivo k_\\ell tal que se G é um grafo k_\\ell-aresta-conexo cujo número de arestas é divisível por \\ell, então G admite uma P_\\ell-decomposição. Esse resultado prova que a Decomposition Conjecture de Barát e Thomassen (2006), formulada para árvores, é verdadeira para caminhos. / A decomposition of a graph G is a set D = {H_1,...,H_k} of pairwise edge-disjoint subgraphs of G that cover the set of edges of G. If H_i is isomorphic to a fixed graph H, for 1<=i<=k, then we say that D is an H-decomposition of G. In this work, we study the case where H is a path of fixed length. For that, we first decompose the given graph into trails, and then we use a disentangling lemma, that allows us to transform this decomposition into one consisting only of paths. With this approach, we tackle three conjectures on H-decomposition of graphs and obtain results for the case H=P_\\ell is the path of length \\ell. Two of these results solve weakenings of a conjecture of Kouider and Lonc (1999) and a conjecture of Favaron, Genest and Kouider (2010), both for regular graphs. We prove that, for every positive integer \\ell, (i) there is a positive integer m_0 such that, if G is a 2m\\ell-regular graph with m>=m_0, then G admits a P_\\ell-decomposition; (ii) if \\ell is odd, there is a positive integer m_0 such that, if G is an m\\ell-regular graph with m>=m_0 containing an m-factor, then G admits a P_\\ell-decomposition. The third result concerns highly edge-connected graphs: there is a positive integer k_\\ell such that if G is a k_\\ell-edge-connected graph whose number of edges is divisible by \\ell, then G admits a P_\\ell-decomposition. This result verifies for paths the Decomposition Conjecture of Barát and Thomassen (2006), on trees.
|
12 |
On Ve-Degrees and Ev-Degrees in GraphsChellali, Mustapha, Haynes, Teresa W., Hedetniemi, Stephen T., Lewis, Thomas M. 06 February 2017 (has links)
Let G=(V,E) be a graph with vertex set V and edge set E. A vertex v∈V ve-dominates every edge incident to it as well as every edge adjacent to these incident edges. The vertex–edge degree of a vertex v is the number of edges ve-dominated by v. Similarly, an edge e=uv ev-dominates the two vertices u and v incident to it, as well as every vertex adjacent to u or v. The edge–vertex degree of an edge e is the number of vertices ev-dominated by edge e. In this paper we introduce these types of degrees and study their properties.
|
13 |
一些可分組設計的矩陣建構 / Some Matrix Constructions of Group Divisible Designs鄭斯恩, Cheng, Szu En Unknown Date (has links)
在本篇論文中我們使用矩陣來建構可分組設計(GDD), 我們列出了兩種型
式的建構, 第一種 -- 起因於 W.H. Haemers -- A .crtimes. J + I
.crtimes. D, 利用此種建構我們將所有符合 r - .lambda.1 = 1 的
(m,n,k,.lambda.1,.lambda.2) GDD 分成三類: (i) A=0 或 J-I, (ii)
A 為 .mu. - .lambda. = 1 強則圖的鄰接矩陣, (iii) J-2A 為斜對稱
矩陣的核心。第二種型式為 A .crtimes. D + .Abar .crtimes. .Dbar
,此種方法可以建構出 b=4(r-.lambda.2) 的正規和半正規 GDD 。另外在
論文中, 我們研究在這些建構中出現的相關題目。 / In this thesis we use matrices to construct group divisible
designs (GDDs). We list two type of constructions, the first
type is -- due to W.H. Heamers -- A .crtimes. J + I .crtimes.
D and use this construction we classify all the (m,n,k,.
lambda.1, .lambda.2) GDD with r - .lambda.1 = 1 in three
classes according to (i) A = 0 or J-I, (ii) A is the adjacency
matrix of a strongly regular graph with .mu. - .lambda. = 1,
(iii) J - 2A is the core of a skew-symmetric Hadamard matrix.
The second type is A .crtimes. D + .Abar .crtimes. .Dbar ,
this type can construct many regular and semi-regular GDDs with
b=4(r-.lambda.2). In the thesis we investigate related topics
that occur in these constructions.
|
14 |
Regular graphs and convex polyhedra with prescribed numbers of orbitsBougard, Nicolas 15 June 2007 (has links)
Etant donné trois entiers k, s et a, nous prouvons dans le premier chapitre qu'il existe un graphe k-régulier fini (resp. un graphe k-régulier connexe fini) dont le groupe d'automorphismes a exactement s orbites sur l'ensemble des sommets et a orbites sur l'ensemble des arêtes si et seulement si<p><p>(s,a)=(1,0) si k=0,<p>(s,a)=(1,1) si k=1,<p>s=a>0 si k=2,<p>0< s <= 2a <= 2ks si k>2.<p><p>(resp.<p>(s,a)=(1,0) si k=0,<p>(s,a)=(1,1) si k=1 ou 2,<p>s-1<=a<=(k-1)s+1 et s,a>0 si k>2.)<p><p>Nous étudions les polyèdres convexes de R³ dans le second chapitre. Pour tout polyèdre convexe P, nous notons Isom(P) l'ensemble des isométries de R³ laissant P invariant. Si G est un sous-groupe de Isom(P), le f_G-vecteur de P est le triple d'entiers (s,a,f) tel que G ait exactement s orbites sur l'ensemble sommets de P, a orbites sur l'ensemble des arêtes de P et f orbites sur l'ensemble des faces de P. Remarquons que (s,a,f) est le f_{id}-vecteur (appelé f-vecteur dans la littérature) d'un polyèdre si ce dernier possède exactement s sommets, a arêtes et f faces. Nous généralisons un théorème de Steinitz décrivant tous les f-vecteurs possibles. Pour tout groupe fini G d'isométries de R³, nous déterminons l'ensemble des triples (s,a,f) pour lesquels il existe un polyèdre convexe ayant (s,a,f) comme f_G-vecteur. Ces résultats nous permettent de caractériser les triples (s,a,f) pour lesquels il existe un polyèdre convexe tel que Isom(P) a s orbites sur l'ensemble des sommets, a orbites sur l'ensemble des arêtes et f orbites sur l'ensemble des faces.<p><p>La structure d'incidence I(P) associée à un polyèdre P consiste en la donnée de l'ensemble des sommets de P, l'ensemble des arêtes de P, l'ensemble des faces de P et de l'inclusion entre ces différents éléments (la notion de distance ne se trouve pas dans I(P)). Nous déterminons également l'ensemble des triples d'entiers (s,a,f) pour lesquels il existe une structure d'incidence I(P) associée à un polyèdre P dont le groupe d'automorphismes a exactement s orbites de sommets, a orbites d'arêtes et f orbites de sommets. / Doctorat en sciences, Spécialisation mathématiques / info:eu-repo/semantics/nonPublished
|
15 |
Strategic Stochastic Coordination and Learning In Regular Network GamesWei, Yi 19 May 2023 (has links)
Coordination is a desirable feature in many multi-agent systems, such as robotic, social and economic networks, allowing the execution of tasks that would be impossible by individual agents. This thesis addresses two problems in stochastic coordination where each agent make decisions strategically, taking into account the decisions of its neighbors over a regular network.
In the first problem, we study the coordination in a team of strategic agents choosing to undertake one of the multiple tasks. We adopt a stochastic framework where the agents decide between two distinct tasks whose difficulty is randomly distributed and partially observed. We show that a Nash equilibrium with a simple and intuitive linear structure exists for textit{diffuse} prior distributions on the task difficulties. Additionally, we show that the best response of any agent to an affine strategy profile can be nonlinear when the prior distribution is not diffuse. Then, we state an algorithm that allows us to efficiently compute a data-driven Nash equilibrium within the class of affine policies.
In the second problem, we assume that the payoff structure of the coordination game corresponds to a single task allocation scenario whose difficulty is perfectly observed. Since there are multiple Nash equilibria in this game, the agents must use a distributed stochastic algorithm know as textit{log linear learning} to play it multiple times.
First, we show that this networked coordination game is a potential game. Moreover, we establish that for regular networks, the convergence to a Nash equilibrium depends on the ratio between the task-difficulty parameter and the connectivity degree according to a threshold rule. We investigate via simulations the interplay between rationality and the degree of connectivity of the network. Our results show counter-intuitive behaviors such as the existence of regimes in which agents in a network with larger connectivity require less rational agents to converge to the Nash equilibrium with high probability. Simultaneously, we examined the characteristics of both regular graphical coordination games and non-regular graphical games using this particular bi-matrix game model. / Master of Science / This thesis focuses on addressing two problems in stochastic coordination among strategic agents in multi-agent systems, such as robotic, social, and economic networks. The first problem studies the coordination among agents when they need to choose between multiple tasks whose difficulties are randomly distributed and partially observed. The thesis shows the existence of a Nash equilibrium with a linear structure for certain prior distributions, and presents an algorithm to efficiently compute a data-driven Nash equilibrium within a specific class of policies. The second problem assumes a single task allocation scenario, whose difficulty is perfectly observed, and investigates the use of a distributed stochastic algorithm known as log-linear learning to converge to a Nash equilibrium. The thesis shows that the convergence to a Nash equilibrium depends on the task-difficulty parameter and the connectivity degree of the network, and explores the influence of rationality of the agents and the connectivity of the network on the learning process. Overall, the thesis provides insights into the challenges and opportunities in achieving coordination among strategic agents in multi-agent systems.
|
16 |
The b-chromatic number of regular graphs / Le nombre b-chromatique de graphe régulierMortada, Maidoun 27 July 2013 (has links)
Les deux problèmes majeurs considérés dans cette thèse : le b-coloration problème et le graphe emballage problème. 1. Le b-coloration problème : Une coloration des sommets de G s'appelle une b-coloration si chaque classe de couleur contient au moins un sommet qui a un voisin dans toutes les autres classes de couleur. Le nombre b-chromatique b(G) de G est le plus grand entier k pour lequel G a une b-coloration avec k couleurs. EL Sahili et Kouider demandent s'il est vrai que chaque graphe d-régulier G avec le périmètre au moins 5 satisfait b(G) = d + 1. Blidia, Maffray et Zemir ont montré que la conjecture d'El Sahili et de Kouider est vraie pour d ≤ 6. En outre, la question a été résolue pour les graphes d-réguliers dans des conditions supplémentaires. Nous étudions la conjecture d'El Sahili et de Kouider en déterminant quand elle est possible et dans quelles conditions supplémentaires elle est vrai. Nous montrons que b(G) = d + 1 si G est un graphe d-régulier qui ne contient pas un cycle d'ordre 4 ni d'ordre 6. En outre, nous fournissons des conditions sur les sommets d'un graphe d-régulier G sans le cycle d'ordre 4 de sorte que b(G) = d + 1. Cabello et Jakovac ont prouvé si v(G) ≥ 2d3 - d2 + d, puis b(G) = d + 1, où G est un graphe d-régulier. Nous améliorons ce résultat en montrant que si v(G) ≥ 2d3 - 2d2 + 2d alors b(G) = d + 1 pour un graphe d-régulier G. 2. Emballage de graphe problème : Soit G un graphe d'ordre n. Considérer une permutation σ : V (G) → V (Kn), la fonction σ* : E(G) → E(Kn) telle que σ *(xy) = σ *(x) σ *(y) est la fonction induite par σ. Nous disons qu'il y a un emballage de k copies de G (dans le graphe complet Kn) s'il existe k permutations σi : V (G) → V (Kn), où i = 1, …, k, telles que σi*(E(G)) ∩ σj (E(G)) = ɸ pour i ≠ j. Un emballage de k copies d'un graphe G est appelé un k-placement de G. La puissance k d'un graphe G, noté par Gk, est un graphe avec le même ensemble de sommets que G et une arête entre deux sommets si et seulement si le distance entre ces deux sommets est au plus k. Kheddouci et al. ont prouvé que pour un arbre non-étoile T, il existe un 2-placement σ sur V (T). Nous introduisons pour la première fois le problème emballage marqué de graphe dans son graphe puissance / Two problems are considered in this thesis: the b-coloring problem and the graph packing problem. 1. The b-Coloring Problem : A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least a vertex in each other color class. The b-chromatic number of a graph G, denoted by b(G), is the maximum number t such that G admits a b-coloring with t colors. El Sahili and Kouider asked whether it is true that every d-regular graph G with girth at least 5 satisfies b(G) = d + 1. Blidia, Maffray and Zemir proved that the conjecture is true for d ≤ 6. Also, the question was solved for d-regular graphs with supplementary conditions. We study El Sahili and Kouider conjecture by determining when it is possible and under what supplementary conditions it is true. We prove that b(G) = d+1 if G is a d-regular graph containing neither a cycle of order 4 nor of order 6. Then, we provide specific conditions on the vertices of a d-regular graph G with no cycle of order 4 so that b(G) = d + 1. Cabello and Jakovac proved that if v(G) ≥ 2d3 - d2 + d, then b(G) = d + 1, where G is a d-regular graph. We improve this bound by proving that if v(G) ≥ 2d3 - 2d2 + 2d, then b(G) = d+1 for a d-regular graph G. 2. Graph Packing Problem : Graph packing problem is a classical problem in graph theory and has been extensively studied since the early 70's. Consider a permutation σ : V (G) → V (Kn), the function σ* : E(G) → E(Kn) such that σ *(xy) = σ *(x) σ *(y) is the function induced by σ. We say that there is a packing of k copies of G into the complete graph Kn if there exist k permutations σ i : V (G) → V (Kn), where i = 1,…, k, such that σ*i (E(G)) ∩ σ*j (E(G)) = ɸ for I ≠ j. A packing of k copies of a graph G will be called a k-placement of G. The kth power Gk of a graph G is the supergraph of G formed by adding an edge between all pairs of vertices of G with distance at most k. Kheddouci et al. proved that for any non-star tree T there exists a 2-placement σ on V (T). We introduce a new variant of graph packing problem, called the labeled packing of a graph into its power graph
|
17 |
Partitionnement, recouvrement et colorabilité dans les graphes / Partitionability, coverability and colorability in graphsGastineau, Nicolas 08 July 2014 (has links)
Nos recherches traitent de coloration de graphes avec des contraintes de distance (coloration de packing) ou des contraintes sur le voisinage (coloration de Grundy). Soit S={si| i in N*} une série croissante d’entiers. Une S -coloration de packing est une coloration propre de sommets telle que tout ensemble coloré i est un si-packing (un ensemble où tous les sommets sont à distance mutuelle supérieure à si). Un graphe G est (s1,... ,sk)-colorable si il existe une S -coloration de packing de G avec les couleurs 1, ...,,k. Une coloration de Grundy est une coloration propre de sommets telle que pour tout sommet u coloré i, u est adjacent à un sommet coloré j, pour chaque j<i.Dans cette exposé, nous présentons des résultats connus à propos de la S-coloration de packing. Nous apportons de nouveaux résultats à propos de la S-coloration de packing, pour des classes de graphes telles que les chemins, les cycles et les arbres. Nous étudions en détail la complexité du problème de complexité associé à la S-coloration de packing, noté S -COL. Pour certaines instances de S -COL, nous caractérisons des dichotomies entre problèmes NP-complets et problèmes résolubles en tempspolynomial. Nous nous intéressons aux différentes grilles infinies, les grilles hexagonale, carrée, triangulaire et du roi et nous déterminons des propriétés de subdivisions d’un i-packing en plusieurs j-packings, avec j>i. Ces résultats nous permettent de déterminer des S-colorations de packings de ces grilles pour plusieurs séries d’entiers. Nous examinons une classe de graphe jamais étudiée en ce qui concerne la S -coloration de packing: les graphes subcubiques. Nous déterminons que tous les graphes subcubiques sont (1,2,2,2,2,2,2)-colorables et (1,1,2,2,3)-colorables. Un certain nombre de résultats sont prouvés pour certaines sous-classes des graphes subcubiques. Pour finir, nous nous intéressons au nombre de Grundy des graphes réguliers. Nous déterminons une caractérisation des graphes cubiques avec un nombre de Grundy de 4. De plus, nous prouvons que tous les graphes r-réguliers sans carré induit ont pour nombre de Grundy de r+1, pour r<5. / Our research are about graph coloring with distance constraints (packing coloring) or neighborhood constraints (Grundy coloring). Let S={si| i in N*} be a non decreasing sequence of integers. An S-packing coloring is a proper coloring such that every set of color i is an si-packing (a set of vertices at pairwise distance greater than si). A graph G is (s1,... ,sk)-colorable if there exists a packing coloring of G with colors 1,... ,k. A Grundy coloring is a proper vertex coloring such that for every vertex of color i, u is adjacent to a vertex of color j, for each j<i.In this presentation, we present results about S-packing coloring. We prove new results about the S-coloring of graphs including paths, cycles and trees. We study the complexity problem associated to the S-packing coloring, this problem is denoted S-COL. For some instances of S-COL, we characterize dichotomy between NP-complete problems and problems solved by a polynomial time algorithm. We study also different lattices, the hexagonal, square, triangular and king lattices. We determine properties on the subdivision of an i-packing in several j-packings, for j>i. These results allow us to determine S-packing coloring of these lattices for several sequences of integers. We examine a class of graph that has never been studied for S-packing coloring: the subcubic graphs. We determine that every subcubic graph is (1,2,2,2,2,2,2)-colorable and (1,1,2,2,3)-colorable. Few results are proven about some subclasses. Finally, we study the Grundy number of regular graphs. We determine a characterization of the cubic graphs with Grundy number 4. Moreover, we prove that every r-regular graph without induced square has Grundy number r+1, for r<5.
|
Page generated in 0.0671 seconds