• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 16
  • 6
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 178
  • 178
  • 115
  • 74
  • 60
  • 59
  • 50
  • 48
  • 31
  • 29
  • 29
  • 28
  • 27
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Neural network modelling for shear strength of concrete members reinforced with FRP bars

Bashir, Rizwan, Ashour, Ashraf 10 April 2012 (has links)
Yes / This paper investigates the feasibility of using artificial neural networks (NNs) to predict the shear capacity of concrete members reinforced longitudinally with fibre reinforced polymer (FRP) bars, and without any shear reinforcement. An experimental database of 138 test specimens failed in shear is created and used to train and test NNs as well as to assess the accuracy of three existing shear design methods. The created NN predicted to a high level of accuracy the shear capacity of FRP reinforced concrete members. Garson index was employed to identify the relative importance of the influencing parameters on the shear capacity based on the trained NNs weightings. A parametric analysis was also conducted using the trained NN to establish the trend of the main influencing variables on the shear capacity. Many of the assumptions made by the shear design methods are predicted by the NN developed; however, few are inconsistent with the NN predictions.
122

Flexural behaviour of rectangular FRP tubes fully or partially filled with reinforced concrete / Comportement en flexion de tubes en PRF rectangulaires entièrement ou partiellement remplis de béton armé

Soliman, Ahmed Mohamed Abouzied January 2016 (has links)
Abstract: Recently, fiber-reinforced polymer (FRP) composite materials have been used in the field of civil engineering constructions especially in corrosive environments. They can be used as internal reinforcement for beams, slabs, and pavements, or as external reinforcement for rehabilitation and strengthening different structures. One of their innovative applications is the concrete-filled FRP tubes (CFFTs) which are becoming an alternative for different structural members such as piles, columns, bridge girders, and bridge piers due to their high performance and durability. In such integrated systems, the FRP tubes act as stay-in-place forms, protective jackets for the embedded concrete and steel, and as external reinforcement in the primary and secondary direction of the structural member. Extensive research was developed on CFFTs as columns, but comparatively limited research was carried out on CFFTs as beams especially those with rectangular sections. The circular sections exhibit magnificent confinement efficiency in case of columns. However, the rectangular sections have higher moment of inertia and flexural stiffness to resist the applied loads and deformations in case of beams. Moreover, the construction and architectural requirements prefer the rectangular section of beams, rather than the circular beams, due to its stability during installation and its workability during connecting to other structural members like slabs and columns. Also, CFFTs that are completely filled with concrete are not optimal for applications governed by pure bending, because the excess weight of the cracked concrete below the neutral axis may increase the transportation and installation cost. This dissertation presents experimental and theoretical investigations on the flexural behaviour of rectangular CFFT beams with steel rebar. These hybrid FRP-concrete-steel tubular rectangular beams contain outer rectangular filament-wound glass-FRP (GFRP) tubes to increase the sectional moment of inertia, to provide flexural and shear reinforcement, and to protect the inner structural elements (concrete and steel) against corrosion. The outer tubes were fully-or-partially filled with concrete and were reinforced with steel rebar at the tension side only. Inner hollow circular or square filament-wound GFRP tubes, shifted toward the tension zone, were provided inside the CFFT beam to eliminate the excess weight of the cracked concrete at the tension side, to confine actively the concrete at the compression side and to act as reinforcement at the tension side. The surfaces of tubes adjacent to concrete were roughened by sand coating to fulfill the full composite action of such hybrid section. Several test variables were chosen to investigate the effect of the outer and inner tubes thickness, fibers laminates, and shape on the flexural behaviour of such hybrid CFFT beams. To fulfil the objectives of the study, twenty-four full-scale beam specimens, 3200 mm long and 305×406 mm2 cross section, were tested under a four-point bending load. These specimens include eight fully-CFFT beams with wide range of tube thickness of 3.4 mm to 14.2 mm, fourteen partially-CFFT beams with different outer and inner tubes configurations, and two conventional steel-reinforced concrete (RC) beams as control specimens. The results indicate outstanding performance of the rectangular fully and partially-CFFT beams in terms of strength-to-weight ratio and ductility compared to the RC beams. The fully-CFFT beams with small tube thickness failed in tension by axial rupture of fibers at the tension side. While, the fully-CFFT beams with big tube thickness failed in compression by outward buckling of the outer tube compression flange with warning signs. The results indicate also that the flexural strength of the fully-CFFT beams was ascending nonlinearly with increasing the tubes thickness until a certain optimum limit. This limit was evaluated to define under-and-over-reinforced CFFT sections, and consequently to define the tension and compression failure of fully-CFFT beams, respectively. The inner hollow tubes act positively in reinforcing the partially-CFFT beams and confining the concrete core at the compression side. The strength-to-weight ratio of the partially-CFFT beams attained higher values than that of the corresponding fully-CFFT beams. Generally, the partially-CFFT beams failed gradually in compression due to outward buckling of the outer tube compression flange with signs of confining the concrete core at the compression side. The inner circular voids pronounced better performance than the square inner voids, however they have the same cross sectional area and fiber laminates. Theoretical section analysis based on strain compatibility/equilibrium has been developed to predict the moment-curvature response of the fully-CFFT section addressing the confinement and tension stiffening of concrete. The analytical results match well the experimental results in terms of moment, deflection, strains, and neutral axis responses. In addition, analytical investigation was conducted to examine the validity of the North American design codes provisions for predicting the deflection response of fully and partially-CFFT beams. Based on these investigations, a new power and assumptions were proposed to Branson’s equation to predict well the effective moment of inertia of the CFFT section. These assumptions consider the effect of the GFRP tube strength, thickness and configuration, in addition to the steel reinforcement ratio. The proposed equations predict well the deflection in the pre-yielding and post-yielding stages of the hybrid FRP-concrete-steel CFFT rectangular beams. / Résumé: Les matériaux composites en polymère renforcé de fibres (PRF) ont récemment été utilisés dans le domaine des constructions de génie civil, en particulier dans les environnements corrosifs. Elles peuvent être utilisées comme une armature interne pour des poutres, dalles et les trottoirs, ou comme une armature externe pour la réhabilitation et le renforcement de différentes structures. L'une de leurs applications novatrices est les tubes de polymères renforcés de fibres remplis de béton (TPFRB ) qui sont en train de devenir une alternative pour divers éléments structuraux tels que les pieux, les colonnes, les poutres et les piliers de ponts en raison de leur haute performance et durabilité. Dans de tels systèmes intégrés, les tubes PRF agissent comme un coffrage permanent, une chemise protectrice pour le béton et l'acier encastrés, et comme une armature externe dans les directions longitudinale et transversale de l'élément structural. La recherche a été concentrée sur les TPRFB comme des colonnes, mais très peu de recherche a été effectué les TPRFB comme des poutres particulièrement celles à section rectangulaire. La section circulaire présente une efficacité de confinement efficace en cas de colonnes. Toutefois, la section rectangulaire a un moment d'inertie plus élevé et une rigidité flexionnelle plus efficace pour résister les charges appliquées et les déformations dans le cas des poutres. Par ailleurs, les travaux de construction et les exigences architecturales préfèrent la section rectangulaire des poutres, plutôt que les poutres circulaires, en raison de sa stabilité pendant l'installation et sa maniabilité lors de la connexion à d'autres membres structuraux comme les dalles et les colonnes. En outre, les poutres TPRFB qui sont complètement remplis de béton ne sont pas optimales pour les applications contrôlées par la flexion pure, puisque le béton fissuré en dessous de l'axe neutre ne contribue pas à la résistance et augmente le poids propre et les coûts de transport et d'installation. Cette thèse présente des études théoriques et expérimentales sur le comportement en flexion de poutres rectangulaires (TPRFB) en béton armé. Ces poutres rectangulaires tubulaires hybrides en PRF-béton-acier sont composées de tubes rectangulaires externes fabriquées par enroulement filamentaire. Ces tubes fournissent un renforcement de flexion et de cisaillement; et protègent le béton armé contre la corrosion. Les poutres peuvent être soient entièrement ou partiellement remplies de béton. Des tubes intérieurs ( de section circulaires ou carrés) en polymères renforcés de fibres de verre (PRFV) sont positionnés dans la zone tendue de la poutre afin de réduire le poids et d’éliminer le béton fissuré en traction. Pour augmenter l'action composite de la section hybride, les surfaces des tubes adjacents au béton ont été rendues rugueuses par enrobage de sable. Plusieurs variables ont été choisis pour étudier l'effet de l’épaisseur des tubes extérieurs et intérieurs, les laminés de fibres, et la forme sur le comportement en flexion de ces poutres hybrides (TPRFB). Pour atteindre les objectifs de l’étude, vingt-quatre échantillons de poutre pleine grandeur, ayant une longueur de 3200 mm et une section transversale de 305×406 mm2, ont été testés sous une flexion à quatre points. Ces échantillons comprennent huit poutres de TPRFB entièrement remplis avec une large gamme d'épaisseur du tube externe de 3.4 mm à 14.2 mm, quatorze poutres de TPRFB partiellement remplis avec différentes configurations de tubes extérieurs et intérieurs, et deux poutres en béton armé conventionnel, comme échantillons de référence. Les résultats indiquent une performance exceptionnelle des poutres rectangulaires de TPRFB entièrement et partiellement remplies en termes du rapport de la résistance sur la masse et de la ductilité par rapport aux poutres en béton armé conventionnel. Les poutres de TPRFB entièrement remplies avec un tube de petite épaisseur ont rompu de façon moins ductile en tension par rupture axiale des fibres. Les poutres de TPRFB entièrement remplies et ayant une grande épaisseur ont rompu de façon ductile en compression par flambage local vers l’extérieur des parois en compression du tube externe. Les résultats indiquent également que la résistance à la flexion des poutres de TPRFB entièrement remplies augmente d’une façon non linéaire avec l'augmentation de l'épaisseur des tubes jusqu'à une certaine limite optimale. Cette limite a été évaluée pour définir les sections TPRFB sous-armées et surarmées et, par conséquent, pour définir la rupture en tension et en compression des poutres de TPRFB entièrement remplies, respectivement. Les tubes creux intérieurs agissent positivement dans le renforcement des poutres de TPRFB partiellement remplies et en confinant le noyau de béton du côté en compression. En général, les poutres de TPRFB partiellement remplies ont rompu en compression par flambage local vers l'extérieur des parois en compression du tube externe. Les vides circulaires intérieurs ont montré une meilleure performance que les vides carrés intérieurs, bien qu’ils aient la même superficie de la section transversale et le même taux de PRF. Une analyse théorique basée sur la compatibilité des déformations d’une section en flexion a été développée pour prédire la réponse moment-courbure de la poutre TPRFB en tenant compte des pourcentages de confinement externe et interne. Les résultats analytiques et les résultats expérimentaux s’accordent en termes de moment, flèche, déformations, et positions de l'axe neutre. En outre, une étude analytique a été menée afin d'examiner la validité des codes de conception nord-américains pour prédire la réponse en flexion des poutres TPRFB. En se basant sur les résultats de ces études, de nouvelles équations ont été proposées pour mieux prédire le moment effectif d'inertie de la section et une nouvelle procédure de conception pour prédire les capacités ultimes. Ces équations considèrent l'effet de la résistance des tubes en PRFV externe et interne que le taux d’armature en acier. En outre, ils prédisent bien la flèche dans les phases avant et après la limite élastique des poutres rectangulaires hybrides à haute performance.
123

Reinforced Concrete Beams Strengthened with Side Near Surface Mounted FRP : A parametric study based on finite element analysis

Eredini, Rewan January 2016 (has links)
Most of the today’s concrete structures are older than tenyears, and the need to strengthening existing structures is growing steadily. This is due to various reasons such as degradation due to ageing, environmentally induced degradation, poor initial design or construction and lack of maintenance, to name a few. Among the benefits of strengthening existing structures are; less impacts on the environmental and financial benefits. Therefore, there is a need to find alternative ways to strengthen concrete structures more effectively. For the past decades, several different strengthening methods have been studied. Two examples are externally bonded reinforcement (EBR) and near surface mounted reinforcement (NSM). The outcome of these studies has shown a significant enhancement to the structures. Steel plates and rebar have been used to strengthen concrete structures and have shown good increases in flexural capacity. For this purpose, resins have been used to implement the steel plates and rebar, e.g. shotcrete and epoxy. Due to the weight of steel and its sensitivity to corrosion, new materials have been sought. A promising material for this use is the fiber reinforced polymers (FRP). There are several types of FRP such as, carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP) and aramid fiber reinforced polymer (AFRP). These new material has shown a better performance, due to their light weight, resistance to corrosion,etc. NSM and EBR perform extremely well in practice as long as sufficient anchorage is provided. However, a premature debonding has been observed by several researchers. This report will study an alternative method to reinforce existing concrete structures called “Side Near Surface Mounted Reinforcement (S-NSMR)” in association with a project run by Gabriel Sas at Luleå University of Technology. This is compared to Bottom Near Surface Mounted Reinforcement (B-NSM), which is a well-established method. It is assumed that the fiberutilisation will increase in NSM applied on the side of the beam. If this hypothesis is proven correct, the proposed method will also solve a major constrain in the utilisation of the NSM technique. In certain cases, the bottom of a beam is not fully accessible for strengthening using bottom Applied NSM techniques due to e.g. partition walls or beam-column joints. To test the effect of S-NSMR seven concrete beams, one reference beam with no fiberreinforcement and two sets of three, for S-NSMR and B-NSMR respectively with different CFRP-rebar length, were tested in the laboratory. An analytical calculation has also been carried out. In this thesis, a parametric study is performed with FEM software Atena. The thesis begins with a study of the failure phenomena occurring in the earlier mentioned strengthening method. A benchmark model is then modelled with a good comparison to the experimental results. An idealised model of the steel reinforcement in the concrete beam is used according to Eurocode 2. Material parameters in concrete are calculated according to Atena theory documents. The influence of creep and shrinkage are considered by reducing the elastic modulus of concrete by 25 %, reducing the tensile strength by 50 % and fracture energy accordingly. Thereafter, three additional parameters were chosen to continue the parametric study with Atena, 1) CFRP with E-modulus 160 GPa, 2) two different position in cross-section height of S-NSM and 3) five shorter CFRP-rebar each 100 mm smaller than the previous rebar. The behaviour of the two reinforcing types is then compared. The first parameter is, CFRP with a smaller E-modulus. It could be observed that all beams lost their stiffness, especially after yielding of the steel reinforcement. A small improvement in ductility could also be observed. The utilisation rate of CFRP increased by 13-16% in the case of S-NSM and 18-20% in the case of B-NSM. The second parameter is, different position of CFRP along the height of the beams cross-section in S-NSM beams. The positions of the CFRP was lowered in two steps. In each case an increase in stiffness and a decrease in ductility could be observed. However, the increase of the stiffness was still smaller than the stiffness in the B-NSM, in all cases. The failure mode changed from a ductile (concrete crushing) type to a more brittle kind (peeling-off concrete), due to large flexural cracks at the end of the CFRP-rebar.   The utilisation rate of CFRP-rebar, is decreased in each S-NSM beam except for S-NSM 2 with the height 25 mm. The reduction in the utilisation rate of the CFRP is 7-32 % and in S-NSM 2 with the height H25mm showing an increased in utilisation rate by 7 %. The third is parameter, different length of CFRP-rebar. In the case of S-NSM, the failure mode changed from a ductile failure mode to a brittle failure mode. The utilisation rate decreased with the decrease in CFRP length. In three of five cases, the S-NSM shows a higher ultimate load-displacement relation, and in all five cases the maximum tensile strains in the CFRP were higher in S-NSM than B-NSM. Even though the stiffness in the S-NSM is lower than the B-NSM, it would be more preferable to use the S-NSM than B-NSM, because of its higher ultimate load and lower displacements.
124

Development and application of a novel test method for studying the fire behaviour of CFRP prestressed concrete structural elements

Maluk, Cristian January 2014 (has links)
A novel type of precast, prestressed concrete structural element is being implemented in load-bearing systems in buildings. These structural elements combine the use of high-performance, self-consolidating concrete (HPSCC) and non-corroding carbon fibre reinforced polymer (CFRP) prestressing tendons; this produces highly optimized, slender structural elements with excellent serviceability and (presumed) extended service lives. More widely, the use of new construction techniques, innovative materials, and ground-breaking designs is increasingly commonplace in today's rapidly evolving building construction industry. However, the performance of these and other structural elements in fire is in general not well known and must be understood before these can be used with confidence in load-bearing applications where structural fire resistance is a concern. Structural fire testing has traditionally relied on the use of the standard fire resistance test (i.e. furnace test) for assuring regulatory compliance of structural elements and assemblies, and in many cases also for developing the scientific understanding of structural response to fire. Conceived in the early 1900s and fundamentally unchanged since then, the standard testing procedure is characterized by its high cost and low repeatability. A novel test method, the Heat-Transfer Rate Inducing System (H-TRIS), resulting from a mental shift associated with controlling the thermal exposure not by temperature (e.g. temperature measured by thermocouples) but rather by the time-history of incident heat flux, was conceived, developed, and validated within the scope of the work presented in this thesis. H-TRIS allows for experimental studies to be carried out with high repeatability, imposing rationally quantifiable thermal exposure, all at low economic and temporal cost. The research presented in this thesis fundamentally seeks to examine and understand the behaviour of CFRP prestressed HPSCC structural elements in fire, with emphasis placed on undesired 'premature' failure mechanisms linked to the occurrence of heat-induced concrete spalling and/or loss of bond between the pretensioned CFRP tendons and the concrete. Results from fire resistance tests presented herein show that, although compliant with testing standards, temperature distributions inside furnaces (5 to 10% deviation) appear to influence the occurrence of heat-induced concrete spalling for specimens tested simultaneously during a single test; fair comparison of test results is therefore questionable if thermal exposure variability is not explicitly considered. In line with the aims of the research presented in this thesis, H-TRIS is used to carry out multiple comprehensive studies on the occurrence of concrete spalling and bond behaviour of CFRP tendons; imposing a quantified, reproducible and rational thermal exposure. Test results led to the conclusion that a "one size fits all" approach for mitigating the risk of heat-induced concrete spalling (e.g. prescribed dose of polypropylene (PP) fibres included in fresh concrete), appears to be ineffective and inappropriate in some of the conditions examined. This work demonstrates that PP fibre cross section and individual fibre length can have an influence on the risk of spalling for the HPSCC mixes tested herein. The testing presented herein has convincingly shown, for the first time using multiple repeated tests under tightly controlled thermal and mechanical conditions, that spalling depends not only on the thermal gradients in concrete during heating but also on the size and restraint conditions of the tested specimen. Furthermore, observations from large scale standard fire resistance tests showed that loss of bond strength of pretensioned CFRP tendons occurred at a 'critical' temperature of the tendons in the heated region, irrespective of the temperature of the tendons at the prestress transfer length, in unheated overhangs. This contradicts conventional wisdom for the structural fire safety design of concrete elements pretensioned with CFRP, in which a minimum unheated overhang is generally prescribed. Overall, the research studies presented in this thesis showed that a rational and practical understanding of the behaviour of CFRP prestressed HPSCC structural elements during real fires is unlikely to be achieved only by performing additional standard fire resistance tests. Hence, H-TRIS presents an opportunity to help promote an industry-wide move away from the contemporary pass/fail and costly furnace testing environment. Recommendations for further research to achieve the above goal are provided.
125

[en] LOCAL BUCKLING BEHAVIOR OF PULTRUDED GLASS-FIBER REINFORCED POLYMER (PGFRP) I-SECTION COLUMNS / [pt] FLAMBAGEM LOCAL DE COLUNAS PULTRUDADAS EM POLÍMERO REFORÇADO COM FIBRA DE VIDRO (PGFRP) COM SEÇÃO I

GISELE GOES CINTRA 11 February 2019 (has links)
[pt] Este trabalho tem como objetivo investigar o desempenho de colunas com seção I em polímeros reforçados com fibra de vidro (pGFRP) submetidas a cargas de compressão concêntricas de curta duração. Uma revisão bibliográfica acerca das teorias existentes é apresentada, incluindo os conceitos básicos de instabilidade, teoria de flambagem global e local, modos de falha de colunas perfeitas, bem como o comportamento de colunas reais. Um programa experimental foi conduzido, incluindo a caracterização dos materiais. Vinte e nova colunas – com três diferentes seções I e diferentes tipos de resina, propriedades mecânicas, bem como comprimentos – foram testadas. Do ponto de vista global, as colunas foram biengastadas. As placas constituintes, por sua vez, foram testadas com três diferentes condições de contorno: biengastadas (CC), biapoiadas (SS) e simplesmente em contato com as chapas de base da máquina de compressão (CB). Foi observado que a condição de contorno CB – a mais adotada em estudos anteriores -, se aproxima mais de um engaste do que de uma condição simplesmente apoiada. A distribuição não linear de deformações elásticas ao longo da seção também foi investigada. Finalmente, recomendações para um ensaio de flambagem local apropriado foram propostas. / [en] This work aims to investigate the performance of pultruded glass fiber reinforced polymer (pGFRP) I-section columns subject to short term concentric compression. A review of existing theories is presented, including the instability concepts, global and local buckling theories, perfect columns failure modes and the behavior of real columns. An experimental program including material characterization was conducted. Twenty-nine stubs – with three different I-sections geometries, having distinct flange width-to-section depth ratios (bf/d = 0.5; 0.75 and 1.0), mechanical properties, overall lengths and matrices – were tested. In a global point of view, the columns were fixed at both ends. The constituent plates, on the other hand, were tested with different end-conditions: clamped (CC), simply supported (SS) and simply in contact with base plates of the universal machine (CB). The third analyzed boundary condition, which is the most adopted in previous studies, was concluded to be closer to a clamped end-condition. The non-linear elastic strains distribution throughout the cross-section was also investigated. Finally, guideline recommendations for successful local buckling tests were proposed.
126

Concrete deep beams reinforced with internal FRP

Andermatt, Matthias 11 1900 (has links)
Concrete deep beams with small shear span-to-depth (a/d) ratios are common elements in structures. However, there are few experimental results on the behaviour of FRP reinforced concrete deep beams and no specific modelling techniques exist in design codes for such members. The objectives of this study were to examine the shear behaviour of FRP reinforced concrete deep beams containing no web reinforcement and to develop a modelling technique. Test results of 12 large-scale specimens are reported where the primary variables included the a/d ratio, reinforcement ratio, member height, and concrete strength. The results showed that an arch mechanism was able to form in FRP reinforced concrete beams having a/d 2.1. A strut and tie modelling procedure adapted from CSA A23.3-04 was capable of accurately predicting the capacity of FRP reinforced concrete deep beams containing no web reinforcement while sectional shear models gave poor, but conservative, predictions. / Structural Engineering
127

Behaviour of Post-Tensioned Slab Bridges with FRP Reinforcement under Monotonic and Fatigue Loading

Noel, Martin January 2013 (has links)
The introduction of fibre-reinforced polymers (FRPs) to the field of civil engineering has led to numerous research efforts focusing on a wide range of applications where properties such as high strength, light weight or corrosion resistance are desirable. In particular, FRP materials have been especially attractive for use as internal reinforcement in reinforced concrete (RC) structures exposed to aggressive environments due to the rapidly deteriorating infrastructure resulting from corrosion of conventional steel reinforcement. While FRPs have been successfully implemented in a variety of structural applications, little research has been conducted on the use of FRP reinforcement for short span slab bridges. Furthermore, the behaviour of FRP-RC flexural members cast with self-consolidating concrete (SCC) is largely absent from the literature. The present study investigates the behaviour of an all-FRP reinforcement system for slab bridges which combines lower cost glass FRP (GFRP) reinforcing bars with high performance carbon FRP (CFRP) prestressed tendons in SCC to produce a structure which is both cost-efficient and characterized by excellent structural performance at the serviceability, ultimate and fatigue limit states. An extensive experimental program comprised of 57 large or full-scale slab strips was conducted to investigate the effects of reinforcement type, reinforcement ratio, prestressing level and shear reinforcement type on the flexural performance of slab bridges under both monotonic and fatigue loading. The proposed reinforcement system was found to display excellent serviceability characteristics and high load capacities as well as significant deformability to allow for sufficient warning prior to failure. Lastly, the use of post-tensioned CFRP tendons limited the stresses in the GFRP reinforcing bars leading to significantly longer fatigue lives and higher fatigue strengths compared to non-prestressed slabs. Analytical models were used to predict the behaviour of the slab bridge strips at service and at ultimate. Where these models failed to accurately represent the experimental findings, simple modifications were proposed. The results from ancillary tests were also used to modify existing analytical models to predict the effects of fatigue loading on the deflection, crack width, shear resistance and flexural capacity of each of the tested slabs.
128

Role of end peeling in behavior of reinforced concrete beams with externally bonded reinforcement

Allen, Christine 07 April 2010 (has links)
Aging bridges in the United States demand effective, efficient, and economical strengthening techniques to meet future traffic requirements. One such technique is to bond steel or fiber reinforced polymer (FRP) plates to the tension faces of reinforced concrete bridge beams with adhesives to strengthen them in flexure. However, beams that have been flexurally strengthened in this manner often fail prematurely, in particular by plate end peeling. The benefits of flexural strengthening by externally bonded reinforcement can only be fully realized by preventing premature failure modes so as to allow the development of composite action between the beam and the external reinforcement. With this goal in mind, several critical limit states of externally reinforced beams are examined in this thesis. Models developed by Roberts (1989) and by Colotti, Spadea, and Swamy (2004) that predict premature plate end debonding are examined in depth using data from previously conducted experimental programs that employed both steel and FRP external reinforcement. In addition, various parameters of the concrete beam, adhesive, and external reinforcement are analyzed in each model to determine the role of each parameter in failure prediction. A critical appraisal of the performance of the models using existing experimental data leads to the selection of the Roberts (1989) model. This model is used to develop recommended design guidelines for flexurally strengthening reinforced concrete bridge beams with externally bonded FRP plates and for preventing premature plate peeling.
129

Behaviour of Shear-critical Reinforced Concrete Beams Retrofitted with Externally Applied Fibre-reinforced Polymers

Colalillo, Michael Anthony 11 December 2012 (has links)
Ageing infrastructure that is shear deficient and may be at risk of brittle collapse, particularly in seismically active regions, can be economically strengthened using externally bonded fibre-reinforced polymers (FRP). Although many studies have been conducted on small-scale specimens subject to monotonic loading, little experimental data exists for large-scale specimens and those tested under reversed cyclic loading to simulate a seismic event. An experimental study of large-scale (400 mm x 650 mm) beam specimens strengthened in shear with FRP was conducted to examine the effects of reversed cyclic loading and to quantify material shear strength contributions. Testing showed that FRP retrofits were highly effective at improving shear performance and were not adversely affected by reversed cyclic loading prior to the occurrence of flexural yielding. The shear resistance attributed to concrete was found to remain relatively consistent with reversed cyclic loading prior to flexural yielding, after which point concrete strength decay was apparent. The loss of concrete shear resistance directly influenced the rate of FRP straining and the achievable ductility. An analytical model using the Modified Compression Field Theory (MCFT) was developed for externally bonded FRP reinforcement to describe the experimental behaviour and to evaluate the accuracy of current FRP design methods. Failures were accurately modelled when appropriate FRP strain limits were used for the ultimate strength and for the stress transfer capacity across the shear crack. Proposed FRP strain limits were developed considering the strain distribution along the crack plane. In addition, improved strain limits incorporate the effect of rupture failure due to stress concentrations in the FRP wrapped around the beam corners. The proposed FRP formulations offer improved accuracy over the current FRP design methods (CSA S6-06 and ACI 440.2R-08), which suggest a broadly applied maximum strain limit of 0.004 mm/mm, which was determined to be overly conservative for FRP rupture failures.
130

Behaviour of Shear-critical Reinforced Concrete Beams Retrofitted with Externally Applied Fibre-reinforced Polymers

Colalillo, Michael Anthony 11 December 2012 (has links)
Ageing infrastructure that is shear deficient and may be at risk of brittle collapse, particularly in seismically active regions, can be economically strengthened using externally bonded fibre-reinforced polymers (FRP). Although many studies have been conducted on small-scale specimens subject to monotonic loading, little experimental data exists for large-scale specimens and those tested under reversed cyclic loading to simulate a seismic event. An experimental study of large-scale (400 mm x 650 mm) beam specimens strengthened in shear with FRP was conducted to examine the effects of reversed cyclic loading and to quantify material shear strength contributions. Testing showed that FRP retrofits were highly effective at improving shear performance and were not adversely affected by reversed cyclic loading prior to the occurrence of flexural yielding. The shear resistance attributed to concrete was found to remain relatively consistent with reversed cyclic loading prior to flexural yielding, after which point concrete strength decay was apparent. The loss of concrete shear resistance directly influenced the rate of FRP straining and the achievable ductility. An analytical model using the Modified Compression Field Theory (MCFT) was developed for externally bonded FRP reinforcement to describe the experimental behaviour and to evaluate the accuracy of current FRP design methods. Failures were accurately modelled when appropriate FRP strain limits were used for the ultimate strength and for the stress transfer capacity across the shear crack. Proposed FRP strain limits were developed considering the strain distribution along the crack plane. In addition, improved strain limits incorporate the effect of rupture failure due to stress concentrations in the FRP wrapped around the beam corners. The proposed FRP formulations offer improved accuracy over the current FRP design methods (CSA S6-06 and ACI 440.2R-08), which suggest a broadly applied maximum strain limit of 0.004 mm/mm, which was determined to be overly conservative for FRP rupture failures.

Page generated in 0.0988 seconds