• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 16
  • 6
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 178
  • 178
  • 115
  • 74
  • 60
  • 59
  • 50
  • 48
  • 31
  • 29
  • 29
  • 28
  • 27
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Debonding of external CFRP plates from RC structures caused by cyclic loading effects

Badenhorst, Adriaan Jakobus 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: This study set out to determine the debonding of externally applied Carbon Fibre Reinforced Polymer (CFRP) plates from RC structures under cyclic loading. Triplet shear tests and finite element (FE) analyses were done on the epoxy to determine the bond stress between the CFRP plate and a reinforced concrete specimen. From these tests and analyses the average shear strength of the bond between the epoxy and concrete substrate was determined and the shear strength of the epoxy specified by the supplier could be confirmed. A case study of a statically loaded beam was performed to verify the bond strength. Finally a reinforced concrete (RC) T-section was designed and pre-cracked to simulate a damaged beam in practice. These sections were then externally reinforced by bonding CFRP plates onto the face of the web. The sections were subjected to static and cyclic loading at different force amplitudes. Along with the experimental tests, FE models were developed and analysed which had the same geometrical and material properties as the experimental specimens. Due to time constraint a FE mesh objectivity study was not done, but the chosen element size is believed to be sufficiently small to replicate the experimental tests objectively. The FE analyses and the experimental tests yielded results that were close to each other on both the global scale and in terms of localised behaviour, thus it was decided that the computational approach could be used for the final design of a model of the debonding of CFRP plates bonded onto RC beams under cyclic loading because the data can be analysed more easily and a large variation of tests can be done. For the T-section 3 tests were conducted; a pull-off (static) test where the bonded CFRP plate was pulled from a specimen to get the ultimate failure envelope of the test specimens. The static test was followed by cyclic tests with force amplitude of 85% and 65% of the ultimate pull-off strength. Different measurements were taken to get the global and local displacement behaviour of the section. The global displacement was measured by means of a linear variable displacement transducer (LVDT, displacement meter) clamped onto the CFRP plate that pushed on the top of the concrete and the local displacement was measured with the help of the Aramis system. The displacement was then compared to the same displacements of nodes and elements in the FE models. The result was a confirmation that the results from the FE models were sufficient to design a model for cyclic debonding of CFRP plates from RC structures. From the FE models the relative displacement between the CFRP plate and concrete was obtained in the vicinity of a crack. This relative displacement was then normalised by the respective stress range of the different tests, from which the normalised relative displacement was plotted against the number of cycles to get an equation limiting the number of cycles for a specific stress range. From the results, it appears that for cyclic load levels up to 65% of the peak static resistance, a threshold number of load cycles are required for delamination initiation. Subsequently, a near constant delamination rate is reached. The delamination rate is significantly lower for lower cyclic load levels. Finally, an unstable delamination stage is reached at a level of about 65 μm for all the analyses, after which CFRP pull-off is imminent. Service life design of CFRP reinforcement of RC beams should take into consideration the delamination initiation threshold, the subsequent delamination rate and finally the initiation of unstable delamination. / AFRIKAANSE OPSOMMING: Die projek is uitgevoer om die delaminasie van ekstern aangewende Koolstof Vesel Versterkte Polimeer (KVVP) stroke op gewapende beton strukture te bepaal onder sikliese belasting. Triplet skuif toetse is gedoen op die gebruikte epoksie om die verband-sterkte te bepaaltussen die KVVP stroke en die beton proefstuk. Die skuif toetse is ook met behulp van die eindige element (EE) metode geanaliseer. Die resultaat van die toetse en analises het gewys dat die verband sterkte tussen die KVVP stroke en beton gelyk is aan die skuif sterkte van die epoksie wat verskaf is. `n Gevalle studie van `n monotonies belaste balk is gedoen om die verband-sterkte te verifieër. `n Gewapende beton T-snit is ontwerp en voor-af gekraak om `n beskadigde balk in die praktyk voor te stel. Die beskadigde proefstukke is vervolgens ekstern versterk met KVVP stroke wat aan die web van die T-snit vas geplak is. Die versterkte T-snitte is getoets onder statiese en sikliese belasting. Die sikliese toetse is ook onder verskillende spanningsamplitudes getoets. Om die eksperimentele toetse te verifieër is EE modelle gebou en geanaliseer wat dieselfde geometriese en materiaal eienskappe as die eksperimentele proefstukke gehad het, maar as gevolg van `n tydsbeperking is `n sensitiwiteit studie oor die element grootte nie gedoen nie. Die element grootte is klein genoeg gekies en word beskou as voldoende om die gedrag objektief te simuleer. Die EE analises en eksperimentele resultate was na genoeg aan mekaar op beide globale en lokale vlak. Dus is `n analitiese benadering tot die toetse vervolgens gebruik vir die ontwerp van `n model vir delaminasie van KVVP stroke van gewapende beton strukture onder sikliese belasting. Die EE metode stel die analis in staat om `n verskeidenheid van toetse relatief vinnig uit te voer en om die data van die toetse vinniger te interpreteer as deur fisiese eksperimentele toetse. Drie eksperimente is uitgevoer op die T-snitte, `n aftrek-toets (staties) waar die KVVP strook van `n proefstuk afgetrek is om die falingsomhullende diagram te kry en dan ook twee sikliese toetse teen 85% en 65% van die krag amplitude van die falingskrag. Verplasingsmeters is gebruik om die globale verplasing te kry, deur dit vas te klamp op die KVVP strook en dan die verplasing te meet relatief tot die bokant van die beton. Die lokale veplasing is met behulp van die Aramis sisteem verkry. Die eksperimentele verplasings is dan vergelyk met verplasings van die ooreenstemmende nodes en elemente in die EE modelle. Deur die vergelyking van die resultate is dit bevestig dat die eindige element modelle voldoende is om die model vir sikliese delaminasie van KVVP stroke van gewapende beton strukture te gebruik vir die ontwerp. Uit die EE modelle is die relatiewe verplasing tussen die KVVP strook en die beton gekry in die omgewing van `n kraak. Die relatiewe verplasing is genormaliseer deur elkeen se spanningsamplitude. Die genormaliseerde relatiewe verplasing is dan teenoor die aantal siklusse geteken waarvan `n vergelyking vir die maksimum verplasing afgelei is om die aantal siklusse vir `n gegewe spanning amplitude te beperk. Uit die resultate blyk dit dat vir sikliese laste tot en met 65% van die piek statiese weerstand `n aantal siklusse moontlik is voordat delaminasie begin waarna `n konstante delaminasie tempo bereik word. Die delaminasie tempo is stadiger vir sikliese laste teen `n laer belastings amplitude. Laastens word `n onstabiele delaminasie fase bereik by `n vlak van ongeveer 65 μm, na die oorgang delamineer die KVVP strook binne enkele siklusse. Die beginpunt van delaminasie, die delaminasie tempo en laastens die begin van onstabiele delaminasie moet in gedagte gehou word by die ontwerp diens leeftyd van KVVP versterkte gewapende beton balke.
102

Acoustic emission monitoring of damage progression in fiber reinforced polymer rods

Shateri, Mohammadhadi 09 March 2017 (has links)
The fiber reinforced polymer (FRP) bars have been widely used in pre-stressing applications and reinforcing of the civil structures. High strength-to-weight ratio and high resistance to the corrosion make the FRP bars a good replacement for steel reinforcing bars in civil engineering applications. According to the CAN/CSA-S806-12 standard, the maximum recommended stress in FRP bars under service loads should not exceed 25% and 65% of the ultimate strength for glass FRP (GFRP) and carbon FRP (CFRP), respectively. These stress values are set to prevent creep failure in FRP bars. However, for in-service applications, there are few physical indicators that these values have been reached or exceeded. In this work analysis of acoustic emission (AE) signals is used. Two new techniques based on pattern recognition and frequency entropy of the isolated acoustic emission (AE) signal are presented for monitoring damage progression and prediction of failure in FRPs. / May 2017
103

Mecanismos de confinamento em pilares de concreto encamisados com polímeros reforçados com fibras submetidos à flexo-compressão / Confinement mechanisms in concrete columns wrapped by carbon fiber reinforced polymers subjected to flexural compression

Carrazedo, Ricardo 19 December 2005 (has links)
Neste trabalho avaliou-se a influência da forma da seção transversal e da excentricidade do carregamento sobre o efeito de confinamento em pilares de concreto encamisados com polímeros reforçados com fibras (PRF). Para estas avaliações foi utilizada a análise experimental, por meio de ensaios de pilares sob flexo-compressão, e a análise numérica com o método dos elementos finitos. Observou-se que ocorreram reduções significativas dos efeitos de confinamento em pilares de seção quadrada e retangular quando a relação entre o raio de arredondamento dos cantos e o maior lado da seção transversal diminuiu. A influência da relação entre o lado maior e menor, no caso de pilares de seção retangular, não foi tão significativa se comparada ao efeito redutor do raio de arredondamento mencionado anteriormente. Ocorreram ganhos de resistência em todos os pilares ensaiados, indicando que o encamisamento com PRF pode ser utilizado mesmo em situações em que a força de compressão seja aplicada com pequenas excentricidades. O efeito da excentricidade sobre o confinamento dependeu da forma da seção transversal considerada. Em pilares de seção circular a excentricidade reduziu levemente os efeitos de confinamento. Nos pilares de seção quadrada a excentricidade não reduziu significativamente os efeitos de confinamento, sendo que para os menores raios de arredondamento o efeito de confinamento foi até maior na presença da excentricidade. Nos pilares de seção retangular observou-se que aplicando a excentricidade na direção da menor inércia o comportamento foi semelhante ao dos pilares de seção quadrada. Porém, aplicando a excentricidade na direção da maior inércia observou-se um grande efeito de confinamento, maior inclusive que no pilar centrado. / In this work the influence of the cross section shape and eccentricity of the compressive load on the confinement of concrete columns wrapped by fiber reinforced polymer (FRP) was evaluated. Experimental analysis, through flexural compression tests of columns, and numerical analysis developed through the finite element method were used to study these effects. Significant reductions of confinement effects were noticed in square and rectangular cross sections when the ratio of the round off radius to the major side of the column was reduced.The ratio between the major and minor side in rectangular columns was not so important to define the effectiveness of confinement as was the fore mentioned factor. Increases of strength were noticed in all columns tested, showing that FRP wrapping can be successfully used even with small eccentricities of loading. The effect of the eccentricity on the confinement showed to be dependent on the cross section shape. In circular columns the eccentricity of loading reduced the confinement effects. For the square cross section columns tested the confinement was not significantly affected by the eccentricity. In fact, for square columns with low round off radius, the eccentricity increased the confinement effects. Rectangular columns subjected to eccentric loading in the direction of the minor inertia showed a behavior similar to square columns. On the other hand, with the eccentricity applied in the direction of the major inertia, an important confinement effect was observed, more important than in the case of concentric loading.
104

Improving Ductility And Shear Capacity Of Reinforced Concrete Columns With Carbon Fiber Reinforced Polymer

Ozcan, Okan 01 December 2009 (has links) (PDF)
The performance of reinforced concrete (RC) columns during recent earthquakes has clearly demonstrated the possible failures associated with inadequate confining reinforcement. The confinement reinforcement requirements of older codes were less stringent than present standards. Many studies were conducted by applying different retrofitting techniques for RC columns that have inadequate confinement reinforcement. A new retrofitting technique by means of Carbon Fiber Reinforced Polymer (CFRP) was developed and tested in many countries in the last decade. This technique is performed by CFRP wrapping the critical region of columns. The effectiveness of CFRP retrofitting technique was shown in many studies conducted worldwide. In Turkey, the frame members are considerably deficient from the seismic detailing point of view. Therefore, in order to use the CFRP retrofitting technique effectively in Turkey, experimental evidence is needed. This study investigates the performance of CFRP retrofitted RC columns with deficient confining steel and low concrete strength. It was concluded by experimental and analytical results that the CFRP retrofitting method can be implemented to seismically deficient columns. Moreover, two design approaches were proposed for CFRP retrofit design of columns considering safe design regulations.
105

Improvement Of Punching Strength Of Flat Plates By Using Carbon Fiber Reinforced Polymer (cfrp) Dowels

Erdogan, Hakan 01 December 2010 (has links) (PDF)
Due to their practical application, flat-plates have been commonly used slab type in constructions in recent years. According to the investigations that were performed since the beginning of the 20th century, the vicinity of the slab-column connection is found to be susceptible to punching failure that causes serious unrepairable damage leading to the collapse of the structures. The objective of this study is to enhance the punching shear strength of slab-column connections in existing deficient flat plate structures. For this purpose, an economical and easy to install strengthening method was applied to &frac34 / scale flat-slab test specimens. The proposed strengthening scheme employs the use of in house-fabricated Carbon Fiber Reinforced Polymer (CFRP) dowels placed around the column stubs in different numbers and arrangements as vertical shear reinforcement. In addition, the effect of column aspect ratio on strengthening method was also investigated in the scope of this study. Strength increase of at least 30% was obtained for the CFRP retrofitted specimens compared to the companion reference specimen. Three-dimensional finite element analyses of test specimens were conducted by using the general purpose finite element analyses program. 3-D finite element models are successful in providing reasonable estimates of load-deformation behavior and strains. The experimental punching shear capacities and observed failure modes of the specimens were compared with the estimations of strength and failure modes given by punching shear strength provisions of ACI 318-08, Eurocode-2, BS8110-97 and TS500. Necessary modifications were proposed for the existing provisions of punching shear capacity in order to design CFRP upgrading.
106

Skalenübergreifende Modellierung und Simulation des mechanischen Verhaltens von textilverstärktem Polypropylen unter Nutzung der XFEM

Kästner, Markus 20 April 2010 (has links) (PDF)
Die Arbeit beschreibt die skalenübergreifende Modellierung und Simulation des Werkstoffverhaltens von Faser-Kunststoff-Verbunden mit textiler Verstärkungsstruktur, die ausgehend von den konstitutiven Eigenschaften der Verbundbestandteile (Mikroskala) und ihrer geometrischen Anordnung im Verbund (Mesoskala) die rechnerische Vorhersage des effektiven Materialverhaltens des Verbundes (Makroskala) ermöglicht. Neben Schädigungsprozessen beeinflusst insbesondere das dehnratenabhängige Materialverhalten der polymeren Matrix das mechanische Verhalten des Verbundes. Dieser Einfluss wird anhand verschiedener Glasfaser-Polypropylen-Verbunde numerisch untersucht. Ein viskoplastisches Materialmodell bildet dabei das nichtlineare Materialverhalten von Polypropylen ab. Die Modellierung der textilen Verstärkungsstruktur erfolgt durch Anwendung der erweiterten Finiten-Elemente-Methode (XFEM). Anhand des Vergleichs von rechnerisch und experimentell gewonnenen Ergebnissen erfolgt schließlich die Verifikation der vorgeschlagenen Modellierungsstrategie. / This contribution covers the trans-scale modelling and simulation of the mechanical behaviour of textile-reinforced polymers. Starting from the material properties of the individual constituents (micro-scale) and their geometrical arrangement (meso-scale), the effective material behaviour of the composite (macro-scale) is numerically predicted. In addition to damage processes, the inelastic deformation behaviour of the composite is influenced by the strain-rate dependent material behaviour of the polymeric matrix. This influence is numerically investigated for different glass-fibre-polypropylene composites. A viscoplastic material model accounts for the nonlinear mechanical behaviour of polypropylene. The complex textile reinforcement is modelled by the eXtended finite element method (XFEM). A comparison of computed and experimental results allows for the verification of the proposed modelling strategy.
107

An investigation of means of mitigating alkali-silica reaction in hardened concrete

Markus, Reid Patrick 21 November 2013 (has links)
This research project, funded by the Federal Highway Administration (FHWA Project DTFH61-02-C-0097), focuses mainly on alkali-silica reaction (ASR) and techniques to mitigate the effects of alkali-silica reaction in hardened concrete. A large portion of this report discusses the construction and design of an outdoor exposure site built at the University of Texas at Austin where the goal was to cast field representative concrete elements with laboratory precision and expose them to real environmental conditions. The elements were monitored for expansion and deterioration. At discrete expansion levels a range of mitigation methods were implemented on the structures. After the concrete elements were treated, long-term monitoring was conducted to determine the best approach to provide effective suppression of alkali-silica reaction in the various element types. / text
108

Monitoring of an outdoor exposure site : evaluating different treatment methods for mitigation of alkali-silica reactivity in hardened concrete

Resendez, Yadhira Aracely 07 July 2011 (has links)
This research project, funded by the Federal Highway Administration, entails the construction of an outdoor exposure site in order to evaluate various methods for mitigating alkali-silica reaction (ASR) in hardened concrete. The exposure site, built at the Concrete Durability Center at the University of Texas at Austin J.J. Pickle Research campus, included a series of bridge deck, column and slab elements. The specimens were cast in 2008, allowed to expand to predetermined expansion levels and then treated with various mitigation measures, after which the specimens were monitored for expansion, humidity, and deterioration. / text
109

Mechanical Properties Of Cfrp Anchorages

Ozdemir, Gokhan 01 February 2005 (has links) (PDF)
Due to inadequate lateral stiffness, many reinforced concrete buildings are highly damaged or collapsed in Turkey after the major earthquake. To improve the behavior of such buildings and to prevent them from collapse, repair and/or strengthening of some reinforced concrete elements is required. One of the strengthening techniques is the use of CFRP sheets on the existing hollow brick masonry infill. While using the CFRP sheets their attachment to both structural and non-structural members are provided by CFRP anchor dowels. In this study, by means of the prepared test setup, the pull-out strength capacities of CFRP anchor dowels are measured. The effects of concrete compressive strength, anchorage depth, anchorage diameter, and number of fibers on the tensile strength capacity of CFRP anchor dowel are studied.
110

Fibre orientation and breakage in glass fibre reinforced polymer composite systems : experimental validation of models for injection mouldings : validation of short and long fibre prediction models within Autodesk Simulation Moldflow Insight 2014

Parveen, Bushra January 2014 (has links)
End-gated and centre gated mouldings have been assessed with varying thickness and sprue geometries for the centre gate. Alternative image analysis techniques are used to measure the orientation and length of injection moulded short and long fibres composite components. The fibre orientation distribution (FOD) measurements for both geometries have been taken along the flow path. In shear flow the FOD changes along the flow path, however the FOD remains relatively constant during expansion flow. The core width and FOD at the skin within a long glass fibre (LGF) specimen is different in comparison to a short glass fibre (SGF) specimen. Fibre length measurements have been taken from the extrudate, sprue and 2 positions within the centre gate cavity. The size of the sprue has little influence on fibre breakage if the moulding is more than 1 mm thick The SGF FOD prediction models within Autodesk Simulation Moldflow Insight 2014 (ASMI) have been validated against measured SGF data. At present, by default, the models over-predict the < cos2θ > for most geometries. When the coefficients are tailored for each model, drastic improvements are seen in the FOD prediction. The recently developed SGF RSC model accurately predicts the FOD in shear, in a thin geometry, whereas the Folgar-Tucker model predicts the FOD accurately in expansion flow. The measured LGF fibre length distribution (FLD) and FOD have been validated against the LGF prediction models. The LGF models are currently under predicting the breakage and over-predicting < cos2θ >. The breakage prediction improves if measured FLD of the extrudate is input into the model.

Page generated in 0.0675 seconds