• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 86
  • 16
  • 6
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 179
  • 179
  • 116
  • 75
  • 60
  • 60
  • 50
  • 48
  • 31
  • 29
  • 29
  • 29
  • 28
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Experimental response and code modelling of continuous concrete slabs reinforced with BFRP bars

Mahroug, Mohamed E.M., Ashour, Ashraf, Lam, Dennis January 2014 (has links)
This paper presents test results and code predictions of four continuously and two simply supported concrete slabs reinforced with basalt fibre reinforced polymer (BFRP) bars. One continuously supported steel reinforced concrete slab was also tested for comparison purposes. All slabs tested were 500 mm in width and 150 mm in depth. The simply supported slabs had a span of 2000 mm, whereas the continuous slabs had two equal spans, each of 2000 mm. Different combinations of under and over BFRP reinforcement at the top and bottom layers of slabs were investigated. The continuously supported BFRP reinforced concrete slabs exhibited larger deflections and wider cracks than the counterpart reinforced with steel. Furthermore, the over reinforced BFRP reinforced concrete slab at the top and bottom layers showed the highest load capacity and the least deflection of all BFRP slabs tested. All continuous BFRP reinforced concrete slabs failed owing to combined shear and flexure at the middle support region. ISIS-M03-07 and CSA S806-06 design guidelines reasonably predicted the deflection of the BFRP slabs tested. However, ACI 440-1R-06 underestimated the BFRP slab deflections and overestimated the moment capacities at mid-span and over support sections.
72

Flexural performance of FRP reinforced concrete beams

Kara, Ilker F., Ashour, Ashraf 04 1900 (has links)
yes / A numerical method for estimating the curvature, deflection and moment capacity of FRP reinforced concrete beams is developed. Force equilibrium and strain compatibility equations for a beam section divided into a number of segments are numerically solved due to the non-linear behaviour of concrete. The deflection is then obtained from the flexural rigidity at mid-span section using the deflection formula for various load cases. A proposed modification to the mid-span flexural rigidity is also introduced to account for the experimentally observed wide cracks over the intermediate support of continuous FRP reinforced concrete beams. Comparisons with experimental results show that the proposed numerical technique can accurately predict moment capacity, curvature and deflection of FRP reinforced concrete beams. The ACI-440.1R-06 equations reasonably predicted the moment capacity of FRP reinforced concrete beams but progressively underestimated the deflection of continuous ones. On the other hand, the proposed modified formula including a correction factor for the beam flexural rigidity reasonably predicted deflections of continuous FRP reinforced concrete beams. It was also shown that a large increase in FRP reinforcement slightly increases the moment capacity of FRP over-reinforced concrete beams but greatly reduces the defection after first cracking.
73

Tests of continuous concrete slabs reinforced with basalt fibre reinforced plastic bars

Kara, Ilker F., Köroğlu, Mehmet A., Ashour, Ashraf 05 March 2017 (has links)
yes / This paper presents experimental results of three continuously supported concrete slabs reinforced with basalt-fibre-reinforced polymer (BFRP) bars. Three different BFRP reinforcement combinations of over and under reinforcement ratios were applied at the top and bottom layers of continuous concrete slabs tested. One additional concrete continuous slab reinforced with steel bars and two simply supported slabs reinforced with under and over BFRP reinforcements were also tested for comparison purposes. All slabs sections tested had the same width and depth but different amounts of BFRP reinforcement. The experimental results were used to validate the existing design guidance for the predictions of moment and shear capacities, and deflections of continuous concrete elements reinforced with BFRP bars. The continuously supported BFRP reinforced concrete slabs illustrated wider cracks and larger deflections than the control steel reinforced concrete slab. All continuous BFRP reinforced concrete slabs exhibited a combined shear–flexure failure mode. ACI 440-1R-15 equations give reasonable predictions for the deflections of continuous slabs (after first cracking) but stiffer behaviour for the simply supported slabs, whereas CNR DT203 reasonably predicted the deflections of all BFRP slabs tested. On the other hand, ISIS-M03-07 provided the most accurate shear capacity prediction for continuously supported BFRP reinforced concrete slabs among the current shear design equations.
74

Effect of Induction-Heat Post-Curing on Residual Stresses in Fast-Curing Carbon Fibre Reinforced Composites

Bettelli, Mercedes Amelia January 2020 (has links)
Manufacturing induced shape distortions is a common problem for composite materials. Due to the non-isotropic nature of carbon fibre reinforced polymers (CFRP) unavoidable deformations occur during part production. During fabrication of polymer composites, the material obtains its final shape at elevated temperatures. The curing process involves a transition from the liquid state to the solid, glassy state, allowing bonding between fibres and matrix. As the material cools the mismatch in thermal expansion coefficients and cure shrinkage obtained during the matrix polymerization leads to residual stresses on the mechanical level within composite part. There is a great interest from the aircraft and automotive industries, to increase the ability to understand development of shape distortions and residual stresses during the cure, since these deformations often lead to dissatisfaction of tolerances and it is essential to predict the deformations beforehand in order to compensate time and cost.  In this context, a study of residual stresses during the curing process of thermosetting resin composites is presented. A methodology is proposed for predicting the formation and development of manufacturing- induced residual stresses. The present project reports on a comprehensive experimental study on the dependency of different short curing cycles on the build-up of residual stresses in a carbon fibre/fast-curing epoxy system and evaluate of post-curing methods through induction heating and oven post-curing with unidirectional [904] and unsymmetrical [9020] laminates. It includes characterization in thermo-elastic properties and degree-of-cure of the material by Thermal bending test, thermal expansion test, mechanical tensile test and Differential Scanning Calorimetry (DSC) in non-post-cured and post-cured laminates. The results showed slight variation in the thermal properties and not effect in the mechanical properties at different cure and post-curing conditions. Analytical data by Laminate Analysis program validated the experimental thermo-elastic data with analytical simulations. In addition, it is shown improvements in the temperature distributions in the post-curing by induction heating with different experimental set-ups, however, oven post-curing showed a more systematic system, higher heat efficient a low cure temperature, with more consistent mechanisms of shape distortions and residual stresses compared to induction heating. These findings are relevant for the future development of prediction methods for process induced deformations of Fast Curing Epoxy Resins (FCER).
75

Punching shear of concrete flat slabs reinforced with fibre reinforced polymer bars

Al Ajami, Abdulhamid January 2018 (has links)
Fibre reinforcement polymers (FRP) are non-corrodible materials used instead of conventional steel and have been approved to be an effective way to overcome corrosion problems. FRP, in most cases, can have a higher tensile strength, but a lower tensile modulus of elasticity compared to that of conventional steel bars. This study aimed to examine flat slab specimens reinforced with glass fibre reinforced polymer (GFRP) and steel bar materials for punching shear behaviour. Six full-scale two-way slab specimens were constructed and tested under concentric load up to failure. One of the main objectives is to study the effect of reinforcement spacing with the same reinforcement ratio on the punching shear strength. In addition, two other parameters were considered, namely, slab depth, and compressive strength of concrete. The punching shear provisions of two code of practises CSA S806 (Canadian Standards 2012) and JSCE (JSCE et al. 1997) reasonably predicted the load capacity of GFRP reinforced concrete flat slab, whereas, ACI 440 (ACI Committee 440 2015) showed very conservative load capacity prediction. On the other hand, a dynamic explicit solver in nonlinear finite element (FE) modelling is used to analyse a connection of column to concrete flat slabs reinforced with GFRP bars in terms of ultimate punching load. All FE modelling was performed in 3D with the appropriate adoption of element size and mesh. The numerical and experimental results were compared in order to evaluate the developed FE, aiming to predict the behaviour of punching shear in the concrete flat slab. In addition, a parametric study was created to explore the behaviour of GFRP reinforced concrete flat slab with three parameters, namely, concrete strength, shear load perimeter to effective depth ratio, and, flexural reinforcement ratio. It was concluded that the developed models could accurately capture the behaviour of GFRP reinforced concrete flat slabs subjected to a concentrated load. Artificial Neural Networks (ANN) is used in this research to predict punching shear strength, and the results were shown to match more closely with the experimental results. A parametric study was performed to investigate the effects of five parameters on punching shear capacity of GFRP reinforced concrete flat slab. The parametric investigation revealed that the effective depth has the most substantial impact on the load carrying capacity of the punching shear followed by reinforcement ratio, column perimeter, the compressive strength of the concrete, and, the elastic modulus of the reinforcement.
76

Varför används inte FRP mer i Sverige? : Fiber Reinforced Polymer (FRP) är ett material som bland annat används som förstärkning i betong

Karlsson, Jesper, Domberg, Oskar January 2023 (has links)
The Construction sector is one of the biggest contributors to climate change. During 2020 the sector was responsible for 20% out of Sweden's total emitted greenhouse gases. The choice of construction materials is one of the key factors that decides a building’s or facility’s carbon footprint. The purpose of this paper is to research if Fiber Reinforced Polymer (FRP) can be a viable option to conventional steel reinforcement. The aim of this work is to find an answer to the following question “What is it that prevents us in Sweden from using FRP reinforcement in concrete?”. We have carried out calculations on a simple reinforced Concrete Beam and a reinforced concrete wall with different rebars (steel and FRP) according to Eurocode to assess the reliability of using FRP in concrete. The part of the study where carbon footprint is analyzed derives from two Environmental Product Declarations (EPD). The product Combar is one type of fiber reinforced polymer and represents FRP in this study. The steel reinforcement is represented by K500C-T. Results indicate that Combar can be a good alternative to steel with the right circumstances. The lack of standard and high carbon footprint are the two main factors which limits the use of FRP at the moment.During 2023 the goal for the European Commission for standardization is to release updated standards that include a calculation process for FRP. With the upcoming release of the new standard, our thesis is that FRP will get a wider range of use in Sweden. This is because a new standard will help the industry to be more aware of the benefits of using FRP
77

TESTING AND LONG-TERM MONITORING OF A FIVE-SPAN BRIDGE WITH MULTIPLE FRP DECKS-PERFORMANCE AND DESIGN ISSUES

REISING, REINER MARIA WOLFRAM 17 April 2003 (has links)
No description available.
78

BEHAVIOR OF 50 YEAR OLD PRESTRESSED CONCRETE BRIDGE WITH FIBER REINFORCED POLYMER DECK REPLACEMENT

EDER, ERIC WILLIAM 02 September 2003 (has links)
No description available.
79

LIFECYCLE PERFORMANCE MODEL FOR COMPOSITE MATERIALS IN CIVIL ENGINEERING

RICHARD, DEEPAK January 2003 (has links)
No description available.
80

Finite element analysis of an integrally molded fiber reinforced polymer bridge

Hauber, Robert J. January 2011 (has links)
No description available.

Page generated in 0.0617 seconds