• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 250
  • 70
  • 68
  • 24
  • 23
  • 18
  • 14
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 565
  • 105
  • 96
  • 95
  • 93
  • 93
  • 87
  • 86
  • 81
  • 80
  • 79
  • 79
  • 69
  • 60
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Out-of-step Protection Using Energy Equilibrium Criterion in the Time Domain

Paudyal, Sumit 03 July 2008 (has links)
<p>Disturbances in power systems are common and they result in electromechanical oscillations called power swing. The power swings could be severe and it may lead to loss of synchronism among the interconnected generators. This is referred to as out-of-step condition. The voltage and current swings during an out-of-step condition damage power system equipments and also cause unwanted operations of various protective devices. The protection systems require an effective algorithm for fast and accurate detection of out-of-step condition. </p> <p>This research is focused on the development of a simple and effective out-of-step relay capable of detecting out-of-step condition in a complex power system. To achieve this, the research has gone through four distinct stages: development of an algorithm, simulation, hardware implementation and its testing. </p> <p>An out-of-step algorithm is proposed based on equal area criterion in time domain. The equal area criterion in time domain is obtained by modifying the traditional equal area criterion in power angle domain. A single machine infinite bus system, a two machine infinite bus system and a three machine infinite bus system and a 17-bus multiple machines system are used as case studies and are modeled using simulation tool(PSCAD). </p> <p>To test the effectiveness of the proposed algorithm, various out-of-step conditions are simulated by applying disturbances at various locations in the above chosen power system configurations. For hardware implementation and testing of the algorithm, a digital signal processing board (ADSP-BF533 from Analog Devices ) is used. To test the performance of the developed digital relay in a closed loop, real time power system signals are necessary and therefore for this purpose, a Real Time Digital Simulator (RTDS) available in the power research laboratory is used. The RTDS simulator mimics the actual power systems in real time. The signals required by the relays can be tapped from the RTDS and the signals coming from relay can be fed back into the RTDS, which makes the closed loop testing of the digital relay possible. This research has yielded a simple out-of-step algorithm and unlike the other out-of-step detection techniques proposed in the literature does not need offline system studies to arrive at a solution.The developed digital out-of-step relay is capable of making decisions based only on the information available from its point of installation, thus it avoids the communication devices which is advantageous for the out-of-step protection of a complex power system. Finally, the simulation results show that the proposed algorithm can be applied to any power configurations and is faster compared to the conventional concentric rectangle schemes used in the literature.</p>
102

Robust training sequence design for cooperative communications

Huang, Chiun-wei 21 July 2010 (has links)
Recently, the difficulty of placing multiple antennas onto a mobile terminal to exploit more diversity has been solved by using the cooperative communication technique, in which several relay nodes with a single antenna partner with each other to serve as virtual multiple antennas for providing the spatial diversity. Many existing researches in cooperative communication focuses on designing relay strategies to achieve better communication performance. However, most of their designs require the channel state information (CSI) being perfectly known. Unfortunately, CSI is generally unknown in practice. Therefore, before getting benefits brought by the relay-assisted network, it is necessary to obtain accurate channel state information (CSI) at the destination or relays. In this thesis, we also consider the training design for channel estimation in the AF relay network. The involvement of multiple relay nodes to exploit space diversity in cooperative communications requires sophisticated and complicated protocols, which poses a difficulty in avoiding all possible misbehaving relay nodes. Therefore, the channel estimation scheme in cooperative communication network needs to be robust against the possible relay misbehaviors. However, most prior works focused on developing channel estimation schemes by assuming perfect relayassisted communication protocol. By contrast, this work focuses on designing robust channel estimation schemes to combat the possible presence of the relay misbehaviors. Besides considering the robust design against relay misbehaviors, this work also considers more general channel model when designing the training sequence and channel estimation scheme. Specifically, in contrast to assume independent channels across relays, this thesis considers the correlated channels in both phases and the correlated noises in the first phase. Overall, the main problem of this work is to design robust channel estimation and training sequences against relay misbehaviors when the communication channels within the cooperative network are not restricted to be independent.
103

Power Allocation Scheme in Multi-Hop MIMO Amplify-and-Forward Relay Networks

Chen, Jing-Yu 11 July 2011 (has links)
With perfect channel state information at all the transmission terminals, the asymptotic capacity of multi-hop multiple-input multiple-output(MIMO) amplify-andforward(AF) relay channels is derived. Although the derivation is based on the assumption of a large number of antennas, simulation results show that the derived expression is surprisingly accurate for even a small number of antennas, and may even be superior to existing results. In addition, based on the asymptotic result, we present different power allocation schemes to (i) minimization the transmit power; (ii) maximization the network throughput; (iii) minimization the transmit power over all source. Fortunately, the proposed power allocation problems can be formulated using geometric programming(GP). Therefore, the optimal power distribution among the multi-hop relay can be obtained efficiently. For multiuser scenarios, since it is possible that the QoS of each user cannot be satisfied simultaneously, we study jointly admission control and power allocation optimization problem. This joint problem is NP-hard. Therefor, we propose an iterative algorithm to reduced the complexity.
104

Relay Misbehavior Detection for Robust Diversity Combining in Cooperative Communications

Chou, Po-heng 23 July 2011 (has links)
Cooperative communications is an emerging technique that has spatial diversity inherent in wireless multiuser communication systems without multiple antennas at each node. Most studies in the literature assume that users acting as the relays are normally operated and trustworthy, which, however, may not always be true in practice. This thesis considers the design of robust cooperative communication in physical layer for combating relay misbehaviors. This thesis considers both models in which the cooperative communications is with direct path (WDP) and without direct path (WODP). Two signal-correlation-detection rules for both WDP and WODP are proposed, respectively. Utilizing the proposed signal-correlation-detection mechanism, the destination identifies the misbehaving relays within the cooperative communication network and then excludes their transmitting messages when performing the diversity combining to infer the symbols of interest sent by the source. The proposed signal-correlation-detection rules are optimally designed in accordance with either the criterion of the minimization of the probability of misbehavior misidentification or the criterion of the maximum generalized likelihood detector. In addition, this thesis also provides the BER analysis of the cooperative communications employing the proposed misbehaving relay detectors. The simulation result demonstrates that the proposed schemes have excellent robust performance when the relay misbehavior is present in the cooperative communication networks.
105

Dynamic Zone-based Bandwidth-Negotiation Scheduling for IEEE 802.16j WiMAX Networks

Lin, I-Chieh 08 August 2011 (has links)
In IEEE 802.16j MMR (Mobile Multi-hop Relay) networks, bandwidth is divided into two zones, access zone to mobile stations and relay zone to relay stations. To satisfy the requirements of Quality of Services (QoS) for different types of traffic between access zone and relay zone, we propose Bandwidth-Negotiation Scheduling (BNS) for BS and RS to adequately allocate bandwidth. For the purpose of satisfying higher-priority rtPS traffic, BNS can negotiate bandwidth between two zones if the allocated bandwidth is insufficient to meet its QoS requirement. Besides, BNS can satisfy bandwidth requirement for nrtPS as much as possible and it will also do negotiation to allocate at least minimum bandwidth if resource is not sufficient. At last, BNS may reduce the allocated bandwidth for nrtPS if PLR (Packet Loss Ratio) of BE is too high. Therefore, the starvation probability of BE can be decreased by earning this extra bandwidth from nrtPS. In short, the proposed BNS can adjust the boundary between access zone and relay zone dynamically and it can improve bandwidth utilization effectively. Through Markov-chain model, we evaluated the performance of BNS and compared its performance to a mechanism with fixed-boundary. Analytical results have shown that BNS can decrease the probability of exceeding delay constraint for rtPS, increase the throughput, and decrease the PLR for nrtPS when rtPS delay constraint is increased. Moreover, BNS can significantly reduce the possibility of starvation for BE traffic.
106

Robust Channel Estimation for Cooperative Communication Systems in the Presence of Relay Misbehaviors

Chou, Po-Yen 17 July 2012 (has links)
In this thesis, we investigate the problem of channel estimation in the amplify-and-forward cooperative communication systems when the networks could be in the presence of selfish relays. The information received at the destination will be detected and then used to estimate the channel. In previous studies, the relays will deliver the information under the prerequisite for cooperation and the destination can receive the information sent from the source without any possible selfish relay. Therefore, the channel will be estimated under this over idealistic assumption. Unfortunately, the assumption does not make sense in real applications. Currently, we don¡¦t have a mechanism to guarantee the relays will always be cooperative. The performance of channel estimation will be significantly degraded when the selfish relays present in the network. Therefore, this thesis considers an amplify-and-forward cooperative communication system with direct transmission and proposes a detection mechanism to overcome the misbehaving relay problem. The detection mechanism employed estimation is based on likelihood ratio test using both direct transmission and relayed information. The detection result will then be used to reconstruct the codeword used for estimating product channel gain of the source-to-relay and relay- to-destination links. The mathematical derivation for the considered problem is developed and numerical simulations for illustration is also carried out in the thesis. The numerical simulation results verify that the proposed method is indeed able to achieve robust channel estimation.
107

Lifetime Maximization of Secondary Cooperative Systems in Underlay Cognitive Radio Networks

Yu, Hao-Ting 30 August 2012 (has links)
In this thesis, we consider cognitive radio networks (CRN) combined with cooperative transmission, and investigate relay selection and power allocation strategies to maximize network lifetime (NLT). Cognitive radio network enhances spectrum efficiency resource by exploiting capabilities of cognition, learning and coordination against insufficient spectrum resource. In underlay cognitive radio network, however, transmitted energy of secondary user is constrained by interference level observed at primary user (PU). Though cooperation among secondary users (SU), multiple relays from virtual antenna array to improve transmission rate and reliability by exploiting spatial diversity. Most existing works assume that cooperative secondary users are plugged and with infinite energy device. In this thesis, we consider secondary cooperative systems where relays are battery-powered and with finite energy. We will investigate relay-selection schemes to reduce energy consumption of secondary relays and prolong network lifetime under the premises that secondary user¡¦s transmission rate is guaranteed and interference constraint of primary user is met. Our major difference between this work and previous works is the definition of network lifetime, which is defined by the maximum duration that the probability of secondary user¡¦s achievable rate below the guaranteed value, i.e. outage probability, is lower than a predetermined threshold. We proposed four relay-selection methods which take channel state information (CSI) and residual energy information (REI) into considerations to prolong network lifetime. Since the selection metrics of the proposed strategies requires CSI and REI of each individual relay, so the relay-selection can be accomplished in distributed manner through opportunistic sensing. No additional overhead is demanded for information exchange.
108

Video transmission over a relay channel with a compress-forward code design

Polapragada, Chaitanya 15 May 2009 (has links)
There is an increasing demand to support high data rate multimedia applications over the current day wireless networks which are highly prone to errors. Relay channels, by virtue of their spatial diversity, play a vital role in meeting this demand without much change to the current day systems. A compress-forward relaying scheme is one of the exciting prospects in this regard owing to its ability to always outperform direct transmission. With regards to video transmission, there is a serious need to ensure higher protection for the source bits that are more important and sensitive. The objective of this thesis is to develop a practical scheme for transmitting video data over a relay channel using a compress-forward relaying scheme and compare it to direct and multi-hop transmissions. We also develop a novel scheme whereby the relay channel can be used as a means to provide the required unequal error protection among the MPEG-2 bit stream. The area of compress-forward (CF) relaying has not been developed much to date, with most of the research directed towards the decode-forward scheme. The fact that compress-forward relaying always ensures better results than direct transmission is an added advantage. This has motivated us to employ CF relaying in our implementation. Video transmission and streaming applications are being increasingly sought after in the current generation wireless systems. The fact that video applications are bandwidth demanding and error prone, and the wireless systems are band-limited and unreliable, makes this a challenging task. CF relaying, by virtue of their path diversity, can be considered to be a new means for video transmission. To exploit the above advantages, we propose an implementation for video transmission over relay channels using a CF relaying scheme. Practical gains in peak signal-to-noise ratio (PSNR) have been observed for our implementation compared to the simple binary-input additive white Gaussian noise (BIAWGN) and two-hop transmission scenarios.
109

Cross Layer Coding Schemes for Broadcasting and Relaying

John Wilson, Makesh Pravin 2010 May 1900 (has links)
This dissertation is divided into two main topics. In the first topic, we study the joint source-channel coding problem of transmitting an analog source over a Gaussian channel in two cases - (i) the presence of interference known only to the transmitter and (ii) in the presence of side information about the source known only to the receiver. We introduce hybrid digital analog forms of the Costa and Wyner-Ziv coding schemes. We present random coding based schemes in contrast to lattice based schemes proposed by Kochman and Zamir. We also discuss superimposed digital and analog schemes for the above problems which show that there are infinitely many schemes for achieving the optimal distortion for these problems. This provides an extension of the schemes proposed by Bross and others to the interference/source side information case. The result of this study shows that the proposed hybrid digital analog schemes are more robust to a mismatch in channel signal-to-noise ratio (SNR), than pure separate source coding followed by channel coding solutions. We then discuss applications of the hybrid digital analog schemes for transmitting under a channel SNR mismatch and for broadcasting a Gaussian source with bandwidth compression. We also study applications of joint source-channel coding schemes for a cognitive setup and also for the setup of transmitting an analog Gaussian source over a Gaussian channel, in the presence of an eavesdropper. In the next topic, we consider joint physical layer coding and network coding solutions for bi-directional relaying. We consider a communication system where two transmitters wish to exchange information through a central relay. The transmitter and relay nodes exchange data over synchronized, average power constrained additive white Gaussian noise channels. We propose structured coding schemes using lattices for this problem. We study two decoding approaches, namely lattice decoding and minimum angle decoding. Both the decoding schemes can be shown to achieve the upper bound at high SNRs. The proposed scheme can be thought of as a joint physical layer, network layer code which outperforms other recently proposed analog network coding schemes. We also study extensions of the bi-directional relay for the case with asymmetric channel links and also for the multi-hop case. The result of this study shows that structured coding schemes using lattices perform close to the upper bound for the above communication system models.
110

Relay Network Design in Logistics and Telecommunications: Models and Solution Approaches

Kewcharoenwong, Panitan 2010 May 1900 (has links)
Strategic network design has significant impacts on the operational performance of transportation and telecommunications industries. The corresponding networks are typically characterized by a multicommodity ow structure where a commodity is defined by a unique origin-destination pair and an associated amount of ow. In turn, multicommodity network design and hub location models are commonly employed when designing strategic networks in transportation and telecommunications applications. In this dissertation, these two modeling approaches are integrated and generalized to address important requirements in network design for truckload transportation and long-distance telecommunications networks. To this end, we first introduce a cost effective relay network design model and then extend this base model to address the specific characteristics of these applications. The base model determines relay point (RP) locations where the commodities are relayed from their origins to destinations. In doing this, we explicitly consider distance constraints for the RP-RP and nonRPRP linkages. In truckload transportation, a relay network (RP-network) can be utilized to decrease drivers' driving distances and keep them within their domiciles. This can potentially help alleviate the high driver turnover problem. In this case, the percentage circuitry, load-imbalance, and link-imbalance constraints are incorporated into the base model to control related performance metrics that are affected by the distance constraints. When compared to the networks from other modeling approaches, the RP-network is more effective in controlling drivers' tour lengths and capable of controlling the empty mileage to low levels without adding a large amount of additional travel distance. In telecommunications, an RP-network can be beneficial in long-distance data transfers where the signals' delity must be improved/regenerated at RPs along their travel paths. For this setting, we extend the base model to include fixed link setup costs and capacities. From our computational results, our models provide better network configuration that is cost effective and facilitates a better service quality (shorter delays and better connectivity). Concerning methodology, we develop effcient exact solution algorithms based on Benders decomposition, Lagrangean decomposition, and Lagrangean relaxation. The performance of the typical solution frameworks are enhanced via numerous accelerating techniques to allow the solution of large-sized instances in reduced solution times. The accelerating techniques and solution approaches are transferable to other network design problem settings with similar characteristics.

Page generated in 0.0297 seconds