Spelling suggestions: "subject:"remaininguseful"" "subject:"remaininglife""
21 |
Supervised Algorithm for Predictive Maintenance / Övervakad algoritm för prediktivt underhållLu, Haida January 2023 (has links)
Predictive maintenance plays a crucial role in preventing unexpected equipment failures and maintaining assets in good operating conditions in various systems. One such scenario where predictive maintenance has been widely used is in battery management systems for electronic vehicles based on lithium batteries, where the risk of failure can be reduced by predicting the remaining useful life of the lithium battery. This project developed a DL model based on Long Short-Term Memory networks which was able to generalize new and various kinds of battery. The model was implemented on a low-cost, low-power using embedded artifcial intelligence, which enables local model execution, reducing costs, time, and risks associated with transferring data to the cloud. To further optimize the model and reduce its memory usage, quantization was applied before porting it to an embedded system based on the STM32 MCU. The results show that the model migration was successful, with low memory cost and no signifcant degradation in accuracy. Finally, the memory usage of the prediction model was also analyzed. / Predictiv underhåll har en avgörande roll för att förebygga oväntade utrustningsfel och bibehålla tillgångar i god driftsvillkor i olika system. Ett scenario där predictivt underhåll har använts mycket är i batterihanteringssystem för elfordon baserade på litiumbatterier, där risken för fel kan reduceras genom att förutsäga den återstående användbarhetsperioden för litiumbatteriet. I det här projektet utvecklades djupinlärningsprediktiva modeller med hjälp av Keras sekventiella modell för att representera en ferlagersneural nätverk och en Lång Korttidsminne modell för tidserieprediktion. Dessa modeller implementerades på en lågkostnad, låglägesmikrokontroller med inbyggd artifcial intelligence, vilket möjliggör lokal modellkörning, vilket reducerar kostnader, tid och risker med att överföra data till molnet. För att ytterligare optimera modellen och minska dess minnesfotavtryck tillämpades kvantisering innan den portades till en inbyggd system baserat på STM32 mikrokontroller. Resultaten visar att modellmigrationen var framgångsrik, med låg minneskostnad och ingen signifkant försämring av precisionen. Slutligen analyserades även minnesanvändningen av prediktionsmodellen.
|
22 |
Remaining Useful Life Prediction of Power Electronic Devices Using Recurrent Neural Networks / Förutsägelse av återstående livslängd för kraftelektroniska enheter som använder återkommande neurala nätverkCai, Congrui January 2023 (has links)
The growing demand for sustainable technology has led to an increased application of power electronics. As these devices are often exposed to harsh conditions, their reliability is a primary concern for both manufacturers and users. Addressing these reliability challenges involves a set of activities known as Prognostics and Health Management (PHM). In PHM, predicting the Remaining Useful Life (RUL) is crucial. This prediction relies on identifying failure precursors, which signify the presence of degradation. These precursors are then used to construct a degradation model that enables the prediction of the remaining time that the device can work before failure. The project focuses on examining a MOSFET aging dataset from the NASA PCoE dataset depository and a diode aging dataset from Fraunhofer ENAS. The prediction of the remaining useful life of devices using failure precursors has been done by applying recurrent neural network (RNN) methods. However, the prediction results from a single feature is significantly deviated from the actual values. To improve the prediction, the age of the device was proposed as an additional feature. RNNs with a similar number of weights and RNNs with the same hyperparameters are implemented and their performance is evaluated by the accuracy of prediction. The results show that all the RNN models implemented manage to capture the characteristics of the aging data. Despite its simpler structure, the vanilla RNN manages to produce a comparable result with the GRU and LSTM by simpler mechanism and less number of weights. The results also reveal that the characteristics of the data have a significant impact on the final results. / Den växande efterfrågan på hållbar teknik har lett till en ökad tillämpning av kraftelektronik. Eftersom dessa enheter ofta utsätts för tuffa förhållanden är deras tillförlitlighet ett primärt bekymmer för både tillverkare och användare. Att ta itu med dessa tillförlitlighetsutmaningar innebär en uppsättning aktiviteter som kallas Prognostics and Health Management (PHM). I PHM är det avgörande att förutsäga det återstående användbara livet (RUL). Denna förutsägelse bygger på identifiering av felprekursorer, som anger förekomsten av nedbrytning. Dessa prekursorer används sedan för att konstruera en nedbrytningsmodell som möjliggör förutsägelse av den återstående tiden som enheten kan fungera innan fel. Projektet fokuserar på att undersöka en MOSFET-åldringsdataset från NASA PCoE-datauppsättningen och en diodåldringsdataset från Fraunhofer ENAS. Förutsägelsen av den återstående livslängden för enheter som använder felprekursorer har gjorts genom att använda metoder för återkommande neurala nätverk (RNN). Förutsägelseresultatet från en enskild funktion avviker dock avsevärt från de faktiska värdena. För att förbättra förutsägelsen föreslogs enhetens ålder som en extra funktion. RNN med ett liknande antal vikter och RNN med samma hyperparametrar implementeras och deras prestanda utvärderas av förutsägelsens noggrannhet. Resultaten visar att alla implementerade RNN-modeller lyckas fånga egenskaperna hos åldrande data. Trots sin enklare struktur lyckas vanilj RNN producera ett jämförbart resultat med GRU och LSTM genom enklare mekanism och färre antal vikter. Resultaten visar också att uppgifternas egenskaper har en betydande inverkan på de slutliga resultaten.
|
23 |
Adapting a data-driven battery ageing model to make remaining-useful-life estimations using dynamic vehicle data / Anpassning av datadriven batteriåldringsmodell för uppskattningar av återstående livslängd från dynamiska fordonsdataPhatarphod, Viraj January 2021 (has links)
Transportsektorn är en av världens största producenter av växthusgas därav är dess avkarbonisering essentiell för att uppnå Parisavtalets mål för CO2-emissioner. Ett viktigt steg för att uppnå dessa mål utförs genom elektrifiering. Litium-jon-batterier (eng. litium-ion batteries, ’LIB’) har blivit väldigt populära energilagringssystem för batteridrivna elektriska fordon (eng. battery electric vehicles, ’BEV’) men tenderar att åldras, precis som alla andra batterier. Därav krävs forskning kring batteriföråldring på grund av nedbrytningsprocessernas inverkan på prissättningen, prestationerna och miljöpåverkan av BEV. Olika modeller används för att beskriva batteriernas åldrande. Datadrivna modeller som förutspår batteriers livstid ökar i popularitet vars noggrannhet och prestationer till stor del beror på indatats kvalitet. Formatet för tidsinhämtade data kräver enorma mängder lagringsutrymme, hög processkapacitet och längre processer; något ’reducerad’ eller ’aggregerad’ data delvis åtgärdar. Denna avhandling fokuserar på att utveckla en metodik för användning av dynamiska fordonsdata i ’aggregerad’ form. Tidsloggade data inhämtade från kallklimatstesting av Scanias BEV-prototyp användes varav interaktionseffekterna mellan diverse fordonsparametrar samt deras effekt på batteriåldring utifrån en batteriåldringsmodell analyserades. Olika tillvägagångssätt för strukturering av dynamiska fordonsdata i modellen undersöktes också. Tolv aggregeringsscenarion designades och testades. Dessutom valdes tre scenarion för uppskattningar och jämförelser av återstående användbar livslängd (eng. remaining-useful-life, ’RUL’) tillsammans med resultat från tidsinhämtade data. Slutligen drogs slutsatser om: parameterinteraktioner, struktur av dynamiska fordonsdata och RUL. Flera framtida utvecklingsområden har också föreslagits bland annat: tester av andra aggregeringstekniker, utöka modellen till tjänstefordon samt kategorisera användningsbeteenden av fordon för att förbättra RUL-uppskattningar. / The transport sector is one of the world’s largest greenhouse gas producing sector and it’s decarbonisation is imperative to achieve the CO2 emission targets set by the Paris Agreement. One important step towards achieving these targets is through electrification of the sector. Lithium-ion batteries (LIBs) have become very popular energy storage systems for battery electric vehicles (BEVs). However, LIBs like all other batteries, tend to age. Hence, the study of the battery ageing phenomena is very essential since the degradation in battery characteristics hugely determines the cost, performance and the environmental impact of BEVs. Different modelling approaches are used to represent battery ageing behaviour. Data-driven models for predicting the lifetime of batteries are becoming popular. However, the accuracy and performance of data-driven models largely depends upon the quality of data being used as the input. Time-sampled format of logging data results in huge data files requiring enormous amounts of storage space, high processing power requirements and longer processing times. Instead, using data in a ’reduced’ or ‘aggregated’ form can help in addressing these issues. This thesis work focuses on developing a methodology for using dynamic vehicle data in an ‘aggregated’ form. Time-sampled data from a Scania prototype BEV truck, recorded during cold climate test, was used. The interaction effects between various vehicle parameters and their effect on battery ageing in a battery ageing model were analyzed. Different approaches to structuring dynamic vehicle data for use in the model were also studied. Twelve aggregation scenarios were designed and tested. Furthermore, three scenarios were selected for making remaining-useful-life (RUL) estimations and compared alongside time-sampled data results. Finally, conclusions about parameter interactions, structuring of dynamic vehicle data and RUL estimations were drawn. Several next steps for future work have also been suggested such as testing other aggregation techniques, extending the model to vehicle fleets and categorizing vehicle usage behaviours to make better RUL estimations.
|
24 |
Uncertainty-aware deep learning for prediction of remaining useful life of mechanical systemsCornelius, Samuel J 10 December 2021 (has links)
Remaining useful life (RUL) prediction is a problem that researchers in the prognostics and health management (PHM) community have been studying for decades. Both physics-based and data-driven methods have been investigated, and in recent years, deep learning has gained significant attention. When sufficiently large and diverse datasets are available, deep neural networks can achieve state-of-the-art performance in RUL prediction for a variety of systems. However, for end users to trust the results of these models, especially as they are integrated into safety-critical systems, RUL prediction uncertainty must be captured. This work explores an approach for estimating both epistemic and heteroscedastic aleatoric uncertainties that emerge in RUL prediction deep neural networks and demonstrates that quantifying the overall impact of these uncertainties on predictions reveal valuable insight into model performance. Additionally, a study is carried out to observe the effects of RUL truth data augmentation on perceived uncertainties in the model.
|
25 |
A data analytics approach to gas turbine prognostics and health managementDiallo, Ousmane Nasr 19 November 2010 (has links)
As a consequence of the recent deregulation in the electrical power production industry, there has been a shift in the traditional ownership of power plants and the way they are operated. To hedge their business risks, the many new private entrepreneurs enter into long-term service agreement (LTSA) with third parties for their operation and maintenance activities. As the major LTSA providers, original equipment manufacturers have invested huge amounts of money to develop preventive maintenance strategies to minimize the occurrence of costly unplanned outages resulting from failures of the equipments covered under LTSA contracts. As a matter of fact, a recent study by the Electric Power Research Institute estimates the cost benefit of preventing a failure of a General Electric 7FA or 9FA technology compressor at $10 to $20 million.
Therefore, in this dissertation, a two-phase data analytics approach is proposed to use the existing monitoring gas path and vibration sensors data to first develop a proactive strategy that systematically detects and validates catastrophic failure precursors so as to avoid the failure; and secondly to estimate the residual time to failure of the unhealthy items. For the first part of this work, the time-frequency technique of the wavelet packet transforms is used to de-noise the noisy sensor data. Next, the time-series signal of each sensor is decomposed to perform a multi-resolution analysis to extract its features. After that, the probabilistic principal component analysis is applied as a data fusion technique to reduce the number of the potentially correlated multi-sensors measurement into a few uncorrelated principal components. The last step of the failure precursor detection methodology, the anomaly detection decision, is in itself a multi-stage process. The obtained principal components from the data fusion step are first combined into a one-dimensional reconstructed signal representing the overall health assessment of the monitored systems. Then, two damage indicators of the reconstructed signal are defined and monitored for defect using a statistical process control approach. Finally, the Bayesian evaluation method for hypothesis testing is applied to a computed threshold to test for deviations from the healthy band.
To model the residual time to failure, the anomaly severity index and the anomaly duration index are defined as defects characteristics. Two modeling techniques are investigated for the prognostication of the survival time after an anomaly is detected: the deterministic regression approach, and parametric approximation of the non-parametric Kaplan-Meier plot estimator. It is established that the deterministic regression provides poor prediction estimation. The non parametric survival data analysis technique of the Kaplan-Meier estimator provides the empirical survivor function of the data set comprised of both non-censored and right censored data. Though powerful because no a-priori predefined lifetime distribution is made, the Kaplan-Meier result lacks the flexibility to be transplanted to other units of a given fleet. The parametric analysis of survival data is performed with two popular failure analysis distributions: the exponential distribution and the Weibull distribution. The conclusion from the parametric analysis of the Kaplan-Meier plot is that the larger the data set, the more accurate is the prognostication ability of the residual time to failure model.
|
26 |
Contribution to deterioration modeling and residual life estimation based on condition monitoring data / Contribution à la modélisation de la détérioration et à l'estimation de durée de vie résiduelle basées sur les données de surveillance conditionnelleLe, Thanh Trung 08 December 2015 (has links)
La maintenance prédictive joue un rôle important dans le maintien des systèmes de production continue car elle peut aider à réduire les interventions inutiles ainsi qu'à éviter des pannes imprévues. En effet, par rapport à la maintenance conditionnelle, la maintenance prédictive met en œuvre une étape supplémentaire, appelée le pronostic. Les opérations de maintenance sont planifiées sur la base de la prédiction des états de détérioration futurs et sur l'estimation de la vie résiduelle du système. Dans le cadre du projet européen FP7 SUPREME (Sustainable PREdictive Maintenance for manufacturing Equipment en Anglais), cette thèse se concentre sur le développement des modèles de détérioration stochastiques et sur des méthodes d'estimation de la vie résiduelle (Remaining Useful Life – RUL en anglais) associées pour les adapter aux cas d'application du projet. Plus précisément, les travaux présentés dans ce manuscrit sont divisés en deux parties principales. La première donne une étude détaillée des modèles de détérioration et des méthodes d'estimation de la RUL existant dans la littérature. En analysant leurs avantages et leurs inconvénients, une adaptation d’une approche de l'état de l'art est mise en œuvre sur des cas d'études issus du projet SUPREME et avec les données acquises à partir d’un banc d'essai développé pour le projet. Certains aspects pratiques de l’implémentation, à savoir la question de l'échange d'informations entre les partenaires du projet, sont également détaillées dans cette première partie. La deuxième partie est consacrée au développement de nouveaux modèles de détérioration et les méthodes d'estimation de la RUL qui permettent d'apporter des éléments de solutions aux problèmes de modélisation de détérioration et de prédiction de RUL soulevés dans le projet SUPREME. Plus précisément, pour surmonter le problème de la coexistence de plusieurs modes de détérioration, le concept des modèles « multi-branche » est proposé. Dans le cadre de cette thèse, deux catégories des modèles de type multi-branche sont présentées correspondant aux deux grands types de modélisation de l'état de santé des système, discret ou continu. Dans le cas discret, en se basant sur des modèles markoviens, deux modèles nommés Mb-HMM and Mb-HsMM (Multi-branch Hidden (semi-)Markov Model en anglais) sont présentés. Alors que dans le cas des états continus, les systèmes linéaires à sauts markoviens (JMLS) sont mis en œuvre. Pour chaque modèle, un cadre à deux phases est implémenté pour accomplir à la fois les tâches de diagnostic et de pronostic. A travers des simulations numériques, nous montrons que les modèles de type multi-branche peuvent donner des meilleures performances pour l'estimation de la RUL par rapport à celles obtenues par des modèles standards mais « mono-branche ». / Predictive maintenance plays a crucial role in maintaining continuous production systems since it can help to reduce unnecessary intervention actions and avoid unplanned breakdowns. Indeed, compared to the widely used condition-based maintenance (CBM), the predictive maintenance implements an additional prognostics stage. The maintenance actions are then planned based on the prediction of future deterioration states and residual life of the system. In the framework of the European FP7 project SUPREME (Sustainable PREdictive Maintenance for manufacturing Equipment), this thesis concentrates on the development of stochastic deterioration models and the associated remaining useful life (RUL) estimation methods in order to be adapted in the project application cases. Specifically, the thesis research work is divided in two main parts. The first one gives a comprehensive review of the deterioration models and RUL estimation methods existing in the literature. By analyzing their advantages and disadvantages, an adaption of the state of the art approaches is then implemented for the problem considered in the SUPREME project and for the data acquired from a project's test bench. Some practical implementation aspects, such as the issue of delivering the proper RUL information to the maintenance decision module are also detailed in this part. The second part is dedicated to the development of innovative contributions beyond the state-of-the-are in order to develop enhanced deterioration models and RUL estimation methods to solve original prognostics issues raised in the SUPREME project. Specifically, to overcome the co-existence problem of several deterioration modes, the concept of the "multi-branch" models is introduced. It refers to the deterioration models consisting of different branches in which each one represent a deterioration mode. In the framework of this thesis, two multi-branch model types are presented corresponding to the discrete and continuous cases of the systems' health state. In the discrete case, the so-called Multi-branch Hidden Markov Model (Mb-HMM) and the Multi-branch Hidden semi-Markov model (Mb-HsMM) are constructed based on the Markov and semi-Markov models. Concerning the continuous health state case, the Jump Markov Linear System (JMLS) is implemented. For each model, a two-phase framework is carried out for both the diagnostics and prognostics purposes. Through numerical simulations and a case study, we show that the multi-branch models can help to take into account the co-existence problem of multiple deterioration modes, and hence give better performances in RUL estimation compared to the ones obtained by standard "single branch" models.
|
27 |
Pronostic des systèmes complexes par l’utilisation conjointe de modèle de Markov caché et d’observateur / Prognosis of complex systems based on the joint use of an observer and a hidden Markov modelAggab, Toufik 12 December 2016 (has links)
Cette thèse porte sur le diagnostic et le pronostic pour l’aide à la maintenance de systèmes complexes. Elle présente deux approches de diagnostic/pronostic qui permettent de générer les indicateurs utiles pour l’optimisation de la stratégie de maintenance. Plus précisément, ces approches permettent d’évaluer l’état de santé et de prédire la durée de vie résiduelle du système. Les approches présentées visent en particulier à pallier le problème d’absence d’indicateurs de dégradation. Les développements sont fondés sur l’utilisation d’observateurs, de formalisme de Modèle de Markov Caché, des méthodes d’inférences statistiques et des méthodes de prédiction de séries temporelles à base d’apprentissage afin de caractériser et prédire les modes de fonctionnement du système. Les deux approches sont illustrées sur des exemples de dégradation d’un système de régulation de niveau d’eau, d’une machine asynchrone et d’une batterie Li-Ion. / The research presented in this thesis deals of diagnosis and prognosis of complex systems. It presents two approaches that generate useful indicators for optimizing maintenance strategies. Specifically, these approaches are used to assess the level of degradation and estimate the Remaining Useful Life of the system. The aim of these approaches is to overcome for the lack of degradation indicators. The developments are based on observers, Hidden Markov Model formalism, statistical inference methods and learning-based methods in order to characterize and predict the system operating modes. To illustrate the proposed failure diagnosis/prognosis approaches, a simulated tank level control system, an induction motor and a Li-Ion battery were used.
|
28 |
Contribution au diagnostic et pronostic des systèmes à évènements discrets temporisés par réseaux de Petri stochastiques / Contribution to fault diagnosis and prognosis of timed discrete event systems using stochastic Petri netsAmmour, Rabah 11 December 2017 (has links)
La complexification des systèmes et la réduction du nombre de capteurs nécessitent l’élaboration de méthodes de surveillance de plus en plus efficaces. Le travail de cette thèse s’inscrit dans ce contexte et porte sur le diagnostic et le pronostic des Systèmes à Événements Discrets (SED) temporisés. Les réseaux de Petri stochastiques partiellement mesurés sont utilisés pour modéliser le système. Le modèle représente à la fois le comportement nominal et le comportement dysfonctionnel du système. Il permet aussi de représenter ses capteurs à travers une mesure partielle des transitions et des places. Notre contribution porte sur l’exploitation de l’information temporelle pour le diagnostic et le pronostic des SED. À partir d’une suite de mesures datées, les comportements du système qui expliqueraient ces mesures sont d’abord déterminés. La probabilité de ces comportements est ensuite évaluée pour fournir un diagnostic du système en termes de probabilité d’occurrence d’un défaut. Dans le cas où une faute est diagnostiquée, une approche permettant d’estimer la distribution de sa date d’occurrence est proposée. L’objectif est de donner plus de détails sur cette faute afin de mieux la caractériser. Par ailleurs, la probabilité des comportements compatibles est exploitée pour estimer l’état actuel du système. Il s’agit de déterminer les marquages compatibles avec les mesures ainsi que leurs probabilités associées. À partir de cette estimation d’état, la prise en considération des évolutions possibles du système permet d’envisager la prédiction de la faute avant son occurrence. Une estimation de la probabilité d’occurrence de la faute sur un horizon de temps futur est ainsi obtenue. Celle-ci est ensuite étendue à l’évaluation de la durée de vie résiduelle du système. Enfin, une application des différentes approches développées sur un cas d’un système de tri est proposée. / Due to the increasing complexity of systems and to the limitation of sensors number, developing monitoring methods is a main issue. This PhD thesis deals with the fault diagnosis and prognosis of timed Discrete Event Systems (DES). For that purpose, partially observed stochastic Petri nets are used to model the system. The model represents both the nominal and faulty behaviors of the system and characterizes the uncertainty on the occurrence of events as random variables with exponential distributions. It also considers partial measurements of both markings and events to represent the sensors of the system. Our main contribution is to exploit the timed information, namely the dates of the measurements for the fault diagnosis and prognosis of DES. From the proposed model and collected measurements, the behaviors of the system that are consistent with those measurements are obtained. Based on the event dates, our approach consists in evaluating the probabilities of the consistent behaviors. The probability of faults occurrences is obtained as a consequence. When a fault is detected, a method to estimate its occurrence date is proposed. From the probability of the consistent trajectories, a state estimation is deduced. The future possible behaviors of the system, from the current state, are considered in order to achieve fault prediction. This prognosis result is extended to estimate the remaining useful life as a time interval. Finally, a case study representing a sorting system is proposed to show the applicability of the developed methods.
|
29 |
Remaining useful life estimation of critical components based on Bayesian Approaches. / Prédiction de l'état de santé des composants critiques à l'aide de l'approche BayesienneMosallam, Ahmed 18 December 2014 (has links)
La construction de modèles de pronostic nécessite la compréhension du processus de dégradation des composants critiques surveillés afin d’estimer correctement leurs durées de fonctionnement avant défaillance. Un processus de d´dégradation peut être modélisé en utilisant des modèles de Connaissance issus des lois de la physique. Cependant, cette approche n´nécessite des compétences Pluridisciplinaires et des moyens expérimentaux importants pour la validation des modèles générés, ce qui n’est pas toujours facile à mettre en place en pratique. Une des alternatives consiste à apprendre le modèle de dégradation à partir de données issues de capteurs installés sur le système. On parle alors d’approche guidée par des données. Dans cette thèse, nous proposons une approche de pronostic guidée par des données. Elle vise à estimer à tout instant l’état de santé du composant physique et prédire sa durée de fonctionnement avant défaillance. Cette approche repose sur deux phases, une phase hors ligne et une phase en ligne. Dans la phase hors ligne, on cherche à sélectionner, parmi l’ensemble des signaux fournis par les capteurs, ceux qui contiennent le plus d’information sur la dégradation. Cela est réalisé en utilisant un algorithme de sélection non supervisé développé dans la thèse. Ensuite, les signaux sélectionnés sont utilisés pour construire différents indicateurs de santé représentant les différents historiques de données (un historique par composant). Dans la phase en ligne, l’approche développée permet d’estimer l’état de santé du composant test en faisant appel au filtre Bayésien discret. Elle permet également de calculer la durée de fonctionnement avant défaillance du composant en utilisant le classifieur k-plus proches voisins (k-NN) et le processus de Gauss pour la régression. La durée de fonctionnement avant défaillance est alors obtenue en comparant l’indicateur de santé courant aux indicateurs de santé appris hors ligne. L’approche développée à été vérifiée sur des données expérimentales issues de la plateforme PRO-NOSTIA sur les roulements ainsi que sur des données fournies par le Prognostic Center of Excellence de la NASA sur les batteries et les turboréacteurs. / Constructing prognostics models rely upon understanding the degradation process of the monitoredcritical components to correctly estimate the remaining useful life (RUL). Traditionally, a degradationprocess is represented in the form of physical or experts models. Such models require extensiveexperimentation and verification that are not always feasible in practice. Another approach that buildsup knowledge about the system degradation over time from component sensor data is known as datadriven. Data driven models require that sufficient historical data have been collected.In this work, a two phases data driven method for RUL prediction is presented. In the offline phase, theproposed method builds on finding variables that contain information about the degradation behaviorusing unsupervised variable selection method. Different health indicators (HI) are constructed fromthe selected variables, which represent the degradation as a function of time, and saved in the offlinedatabase as reference models. In the online phase, the method estimates the degradation state usingdiscrete Bayesian filter. The method finally finds the most similar offline health indicator, to the onlineone, using k-nearest neighbors (k-NN) classifier and Gaussian process regression (GPR) to use it asa RUL estimator. The method is verified using PRONOSTIA bearing as well as battery and turbofanengine degradation data acquired from NASA data repository. The results show the effectiveness ofthe method in predicting the RUL.
|
30 |
Diagnostic et Pronostic de Systèmes Dynamiques Incertains dans un contexte Bond Graph / Diagnostics and Prognostics of Uncertain Dynamical Systems in a Bond Graph FrameworkJha, Mayank Shekhar 08 December 2015 (has links)
Cette thèse développe des approches pour le diagnostic et le pronostic de systèmes dynamiques incertains en utilisant la technique de modélisation Bond Graph (BG). Tout d'abord, une représentation par intervalles des incertitudes paramétriques et de mesures est intégrée à un modèle BG-LFT (Linear Fractional Transformation). Une méthode de détection robuste de défaut est développée en utilisant les règles de l'arithmétique d'intervalle pour la génération de seuils robustes et adaptatifs sur les résidus nominaux. La méthode est validée en temps réel sur un système de générateur de vapeur.Deuxièmement, une nouvelle méthodologie de pronostic hybride est développée en utilisant les Relations de Redondance Analytique déduites d'un modèle BG et les Filtres Particulaires. Une estimation de l'état courant du paramètre candidat pour le pronostic est obtenue en termes probabilistes. La prédiction de la durée de vie résiduelle est atteinte en termes probabilistes. Les incertitudes associées aux mesures bruitées, les conditions environnementales, etc. sont gérées efficacement. La méthode est validée en temps réel sur un système mécatronique incertain.Enfin, la méthodologie de pronostic développée est mise en œuvre et validée pour le suivi efficace de la santé d'un sous-système électrochimique d’une pile à combustible à membrane échangeuse de protons (PEMFC) industrielle à l’aide de données de dégradation réelles. / This thesis develops the approaches for diagnostics and prognostics of uncertain dynamic systems in Bond Graph (BG) modeling framework. Firstly, properties of Interval Arithmetic (IA) and BG in Linear Fractional Transformation, are integrated for representation of parametric and measurement uncertainties on an uncertain BG model. Robust fault detection methodology is developed by utilizing the rules of IA for the generation of adaptive interval valued thresholds over the nominal residuals. The method is validated in real time on an uncertain and highly complex steam generator system.Secondly, a novel hybrid prognostic methodology is developed using BG derived Analytical Redundancy Relationships and Particle Filtering algorithms. Estimations of the current state of health of a system parameter and the associated hidden parameters are achieved in probabilistic terms. Prediction of the Remaining Useful Life (RUL) of the system parameter is also achieved in probabilistic terms. The associated uncertainties arising out of noisy measurements, environmental conditions etc. are effectively managed to produce a reliable prediction of RUL with suitable confidence bounds. The method is validated in real time on an uncertain mechatronic system.Thirdly, the prognostic methodology is validated and implemented on the electrical electro-chemical subsystem of an industrial Proton Exchange Membrane Fuel Cell. A BG of the latter is utilized which is suited for diagnostics and prognostics. The hybrid prognostic methodology is validated, involving real degradation data sets.
|
Page generated in 0.0688 seconds