• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 36
  • 16
  • Tagged with
  • 91
  • 50
  • 45
  • 34
  • 27
  • 23
  • 18
  • 13
  • 13
  • 13
  • 11
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Untersuchungen zum molekularen Wirkmechanismus des Radioprotektors O-Phospho L-Tyrosin Wechselwirkungen von Phosphotyrosin mit Aktivierungsprozessen des epidermalen Wachstumsfaktorrezeptors /

Wanner, Gabriele, January 2008 (has links)
Hohenheim, Univ., Diss., 2008.
42

Ground verification of telepresence for on-orbit servicing

Stoll, Enrico January 2008 (has links)
Zugl.: München, Techn. Univ., Diss., 2008
43

Mutationen in DNA-Reparaturgenen und deren Bedeutung für die Radioonkologie : klinische und experimentelle Untersuchungen unter besonderer Berücksichtigung des Mammakarzinoms /

Bremer, Michael. January 2004 (has links)
Habilitation - Med. Hochsch., Hannover, 2004.
44

Ground verification of telepresence for On-Orbit Servicing /

Stoll, Enrico. January 2009 (has links)
Zugl.: München, Techn. University, Diss., 2008.
45

Entwicklung einer integrierten Lösung für die Reparaturlogistik Kundenbedürfnisse und Gestaltungsoptionen /

Moos, Peter von. January 2004 (has links) (PDF)
Bachelor-Arbeit Univ. St. Gallen, 2004.
46

Mechanismus der Apoptose, Gentoxizität und DNA-Reparatur in Herpesvirus-Thymidinkinase-exprimierenden Säugerzellen nach Behandlung mit Antiherpes-Virustatika vom Typ der Nukleosidanaloga

Tomicic, Maja T. January 2001 (has links) (PDF)
Mainz, Univ., Diss., 2001.
47

Einfluss von Stickstoffmonoxid, Hydroxylradikalen und Peroxynitrit auf DNA-Schäden, DNA-Reparatur und Mutationen

Phoa, Nicole. January 2002 (has links) (PDF)
Mainz, Univ., Diss., 2002.
48

Optimierung und Objektivierung der DNA-Biegewinkelmessung zur Untersuchung der initialen Schadenserkennung von Glykosylasen im Rahmen der Basen-Exzisions-Reparatur / Optimisation and standardisation of DNA bend angle measurements as application of automated DNA bend angle measurements to initial damage detection of base excision repair glycosylases

Mehringer, Christian Felix January 2021 (has links) (PDF)
Im Rahmen dieser Doktorarbeit sollte anknüpfend an die Ergebnisse aus vo-rangegangenen Untersuchungen der AG Tessmer, das von Büchner et al. [1] vorgestellte Modell zur DNA-Schadenserkennung, welches im Speziellen auf Daten zu den Glykosylasen hTDG und hOGG1 basierte, auf seine Allgemein-gültigkeit für DNA-Glykosylasen untersucht werden. Das Modell beschreibt den Prozess der Schadenserkennung als eine notwendige Übereinstimmung der passiven Biegung am Schadensort mit dem aktiven BiegungswinkeI der scha-densspezifischen Glykosylase. Ein wesentlicher Bestandteil dieser Arbeit war zudem die Etablierung einer automatisierten Messsoftware zur objektiven Biegewinkelmessung an DNA-Strängen in rasterkraftmikroskopischen Aufnah-men. Dies wurde mit verschiedenen Bildverarbeitungsprogrammen sowie einer in MATLAB implementierten Messsoftware erreicht und das Programm zudem auf die Biegewinkelmessung von proteininduzierten Biegewinkeln erweitert. Zur Anwendung kam die Methode der automatisierten Biegewinkelmessung sowohl an rasterkraftmikroskopischen Aufnahmen der Glykosylase MutY gebunden an ungeschädigter DNA als auch an Aufnahmen von DNA mit und ohne Basen-schaden. Neben oxoG:A und G:A, den spezifischen MutY-Zielschäden, wurden auch andere Basenschäden wie beispielsweise oxoG:C und ethenoA:T vermes-sen und zudem die von der Glykosylase MutY an ungeschädigter DNA induzier-te Biegung mit den Biegewinkeln der jeweiligen Zielschäden verglichen. Die Übereinstimmung in den Konformationen der Zielschäden und der Reparatur-komplexe auch für die Glykosylase MutY (wie bereits für hTDG und hOGG1 in oben genannter Arbeit gezeigt) erlauben ein verbessertes Verständnis der Schadenssuche und -erkennung durch DNA-Glykosylasen, indem sie die All-gemeingültigkeit einer Biegungsenergie-basierten initialen Schadenserkennung durch DNA-Glykosylasen unterstützen. Die etablierte Messsoftware kann zu-künftig an weiteren DNA-Schäden und den entsprechenden Protein-DNA-Komplexen ihre Anwendung finden und kann somit durch die effektive Gewin-nung objektiver Daten in großer Menge zur Stützung des Modells beitragen. / The focus of this thesis was to test the general applicability of a model for initial lesion detection by base excision repair (BER) glycosylases. This thesis built on previous results from the Tessmer laboratory on the human base excision re-pair (BER) glycosylases hTDG and hOGG1 (Büchner et al. [1]). Based on this work, a model for initial lesion detection by glycosylases had been proposed that describes the process of damage recognition as a necessary match of the passive bending at the point of damage with the active bending by the damage-specific glycosylase. An essential component of this work was also the estab-lishment of an automated measurement software for objective bend angle measurements on DNA strands in atomic force microscopy (AFM) images. This was achieved with various image processing programs and a custom written MATLAB software. In addition, the procedure was extended to the measure-ment of DNA bend angles in protein-DNA complexes. In particular, the automa-ted bend angle analsyis was applied to AFM images of the glycosylase MutY bound to non-specific DNA and MutY target lesions (oxoG:A and G:A), as well as other DNA damages (oxoG:C and ethenoA:T). In the analyses, DNA bending induced by MutY in undamaged DNA was measured and compared to bending at the respective target damage. Similarities in the conformations of target da-mage and repair complexes also for this additional glycosylase (as already shown for hTDG and hOGG1 in above mentioned work) allow an improved un-derstanding of DNA glycosylase damage search and recognition by supporting the general validity of bending energy-based initial damage detection by DNA glycosylases. In addition, the established measurement software can also be used to measure DNA bending by other protein systems in an unbiased manner and on a high-throughput scale. The software thus contributes to the effective acquisition of objective data.
49

Regulation of the DNA Damage Response by the Ubiquitin System / Regulierung der DNA-Schadensreaktion durch das Ubiquitin System

Xu, Wenshan January 2022 (has links) (PDF)
DNA damage occurs frequently during normal cellular progresses or by environmental factors. To preserve the genome integrity, DNA damage response (DDR) has evolved to repair DNA and the non-properly repaired DNA induces human diseases like immune deficiency and cancer. Since a large number of proteins involved in DDR are enzymes of ubiquitin system, it is critical to investigate how the ubiquitin system regulates cellular response to DNA damage. Hereby, we reveal a novel mechanism for DDR regulation via activation of SCF ubiquitin ligase upon DNA damage. As an essential step for DNA damage-induced inhibition of DNA replication, Cdc25A degradation by the E3 ligase β-TrCP upon DNA damage requires the deubiquitinase Usp28. Usp28 deubiquitinates β-TrCP in response to DNA damage, thereby promotes its dimerization, which is required for its activity in substrate ubiquitination and degradation. Particularly, ubiquitination at a specific lysine on β-TrCP suppresses dimerization. The key mediator protein of DDR, 53BP1, forms oligomers and associates with β-TrCP to inhibit its activity in unstressed cells. Upon DNA damage, 53BP1 is degraded in the nucleoplasm, which requires oligomerization and is promoted by Usp28 in a β-TrCP-dependent manner. Consequently, 53BP1 destruction releases and activates β-TrCP during DNA damage response. Moreover, 53BP1 deletion and DNA damage promote β-TrCP dimerization and recruitment to chromatin sites that locate in the vicinity of putative replication origins. Subsequently, the chromatin-associated Cdc25A is degraded by β-TrCP at the origins. The stimulation of β-TrCP binding to the origins upon DNA damage is accompanied by unloading of Cdc45, a crucial component of pre-initiation complexes for replication. Loading of Cdc45 to origins is a key Cdk2-dependent step for DNA replication initiation, indicating that localized Cdc25A degradation by β-TrCP at origins inactivates Cdk2, thereby inhibits the initiation of DNA replication. Collectively, this study suggests a novel mechanism for the regulation of DNA replication upon DNA damage, which involves 53BP1- and Usp28-dependent activation of the SCF(β-TrCP) ligase in Cdc25A degradation. / DNA-Schäden treten häufig in Folge zellulären Fortschrittes oder durch externe Faktoren auf. Um die Integrität des Genoms zu bewahren und DNA Schäden zu reparieren, die Ursache für viele Autoimmunkrankheiten und Krebs sind, hat sich ein durch DNA Schäden getriggertes Geflecht aus Reparaturprozessen (englisch: “DNA damage response (DDR)”) entwickelt. Hierbei ist es von großem Interesse zu verstehen, wie das Ubiquitin-Proteasom-System die zelluläre Antwort auf DNA-Schäden reguliert. Wir konnten zeigen, dass die SCF Ubiquitin Ligase β-TrCP durch geschädigte DNA aktiviert wird, was einen bisher unbekannten Mechanismus für die Regulation der DDR darstellt. Für den grundlegenden Schritt der durch DNA Schäden ausgelösten Inhibition der DNA Replikation – der Abbau von Cdc25A durch die E3 Ligase β-TrCP – wird die Deubiquitinase Usp28 benötigt. Diese deubiquitiniert β-TrCP als Antwort auf DNA-Schäden und fördert dadurch seine Dimerisierung, die für die Substrat-Ubiquitinierung und dem anschließenden Abbau erforderlich ist. Hierbei unterdrückt die Ubiquitinierung eines spezifischen Lysin-Rests von β-TrCP dessen Dimerisierung. Das Schlüsselprotein vom DDR, 53BP1, oligomerisiert und assoziiert mit β-TrCP, was seine Aktivität in gesunden Zellen inhibiert. Auf DNA-Schäden hin oligomerisiert 53BP1 und wird mit Hilfe von Usp28 abhängig von β-TrCP im Nukleoplasma abgebaut. Durch den Abbau von 53BP1 wird β-TrCP freigesetzt, aktiviert und kann auf DNA Schäden reagieren. Die Deletion von 53BP1 fördert die Dimerisierung von β-TrCP. Die Reparaturmaschinerie wird daraufhin an Stellen des Chromatins rekrutiert, die in der Nähe von vermeintlichen Replikationsursprüngen liegen. Chromatin-assoziiertes Cdc25A wird dann durch β-TrCP ubiquitiniert. Die Bindung von β-TrCP an die Replikationsursprünge in Folge von DNA Schädigung wird begleitet von der Freisetzung von Cdc45, das eine entscheidende Komponente des Präinitiationskomplexes darstellt. Das Beladen von Cdc45 an die Replikationsursprünge stellt eine Schlüsselfunktion der Cdc25A-abhängigen DNA Replikationsinititation dar. Gezielter Abbau von Cdc25A durch β-TrCP an den Replikationsursprüngen inaktiviert Cdk2 und inhibiert dadurch DNA Replikation. Zusammenfassend lässt sich konstatieren, dass unsere Studien einen neuartigen Mechanismus für die Regulation der DNA Replikation auf DNA Schäden hin aufgezeigt haben, der die 53BP1- und Usp28-abhängige Aktivierung der SCF(β-TrCP) Ubiquitin Ligase im Abbau von Cdc25A beinhaltet.
50

Molecular Mechanisms of MYC as Stress Resilience Factor / Molekulare Mechanismen von MYC als Stressresistenzfaktor

Solvie, Daniel Alexander January 2023 (has links) (PDF)
Cancer is one of the leading causes of death worldwide. The underlying tumorigenesis is driven by the accumulation of alterations in the genome, eventually disabling tumor suppressors and activating proto-oncogenes. The MYC family of proto-oncogenes shows a strong deregulation in the majority of tumor entities. However, the exact mechanisms that contribute to MYC-driven oncogenesis remain largely unknown. Over the past decades, the influence of the MYC protein on transcription became increasingly apparent and was thoroughly investigated. Additionally, in recent years several publications provided evidence for so far unreported functions of MYC that are independent of a mere regulation of target genes. These findings suggest an additional role of MYC in the maintenance of genomic stability and this role is strengthened by key findings presented in this thesis. In the first part, I present data revealing a pathway that allows MYC to couple transcription elongation and DNA double-strand break repair, preventing genomic instability of MYC-driven tumor cells. This pathway is driven by a rapid transfer of the PAF1 complex from MYC onto RNAPII, a process that is mediated by HUWE1. The transfer controls MYC-dependent transcription elongation and, simultaneously, the remodeling of chromatin structure by ubiquitylation of histone H2B. These regions of open chromatin favor not only elongation but also DNA double-strand break repair. In the second part, I analyze the ability of MYC proteins to form multimeric structures in response to perturbation of transcription and replication. The process of multimerization is also referred to as phase transition. The observed multimeric structures are located proximal to stalled replication forks and recruit factors of the DNA-damage response and transcription termination machinery. Further, I identified the HUWE1-dependent ubiquitylation of MYC as an essential step in this phase transition. Cells lacking the ability to form multimers display genomic instability and ultimately undergo apoptosis in response to replication stress. Both mechanisms present MYC as a stress resilience factor under conditions that are characterized by a high level of transcriptional and replicational stress. This increased resilience ensures oncogenic proliferation. Therefore, targeting MYC’s ability to limit genomic instability by uncoupling transcription elongation and DNA repair or disrupting its ability to multimerize presents a therapeutic window in MYC-dependent tumors. / Tumorerkrankungen sind eine der häufigsten Todesursachen weltweit. Für die Entstehung und Entwicklung eines Tumors sind Veränderungen im Genom verantwortlich, wobei Proto-Onkogene aktiviert und Tumorsuppressorgene inaktiviert werden. Die MYC-Familie der Proto-Onkogene ist in der Mehrzahl der menschlichen Tumorerkrankungen stark dereguliert. Der genaue Mechanismus, der in MYC-getriebenen Tumoren eine Rolle spielt, ist aber weiterhin ungeklärt. In den letzten Jahrzehnten wurde die Funktion von MYC als Transkriptionsfaktor in den Vordergrund gestellt. Veröffentlichungen der letzten Jahre deuten zusätzlich auf mehrere, bisher unbekannte Funktionen hin, die unabhängig von einer bloßen Regulation von Zielgenen sind und auf eine zusätzliche Rolle bei der Erhaltung der genomischen Stabilität hinweisen. Diese Rolle wird durch wesentliche Ergebnisse dieser Doktorarbeit gestärkt. In dem ersten Teil der Doktorarbeit präsentiere ich einen Pathway, der es MYC ermöglicht, transkriptionelle Elongation und Doppelstrangbruch-Reparatur zu koppeln, wodurch genomische Instabilität in MYC-gesteuerten Tumorzellen limitiert wird. Dieser Pathway wird durch einen schnellen Transfer des PAF1-Komplexes von MYC auf die RNAPII angetrieben, bei dem HUWE1 eine essenzielle Rolle einnimmt. Der Transfer steuert die MYC-abhängige transkriptionelle Elongation und gleichzeitig die Öffnung der Chromatinstruktur. Dies geschieht durch Ubiquitylierung des Histons H2B zugunsten von sowohl transkriptioneller Elongation als auch der DNA-Doppelstrangbruchreparatur. In dem zweiten Teil der Doktorarbeit analysiere ich die Fähigkeit von MYC-Proteinen, als Reaktion auf eine Störung der Transkription und/oder Replikation multimere Strukturen bilden zu können. Diese Fähigkeit wird auch als Phasentrennung bezeichnet. Die multimere Strukturen befinden sich in der Nähe von blockierten Replikationsgabeln und rekrutieren Faktoren der DNA-Schadensreaktion und der Transkriptionsterminationsmaschinerie. Die HUWE1-abhängige Ubiquitylierung von MYC habe ich als wesentlichen Schritt der Phasentrennung identifiziert. Zellen ohne die Fähigkeit zur Bildung von Multimeren zeigen als Reaktion auf Replikationsstress exzessive genomische Instabilität und letztendlich Apoptose auf. Beide Mechanismen machen MYC zu einem Faktor, der genomische Instabilität als Resultat von unphysiologischem Transkriptions- und Replikationsstress limitiert und damit die onkogene Zellteilung gewährleistet. Eine gezielte Beeinflussung der aufgeführten Mechanismen, durch welche MYC die genomische Instabilität limitiert, kann bei MYC-abhängigen Tumoren von großem therapeutischem Nutzen sein.

Page generated in 0.0527 seconds