Spelling suggestions: "subject:"reparatur"" "subject:"apparatur""
71 |
Ein neu entdeckter Weg der Reparatur hydrolytisch geschädigter DNA-Cytosinreste, etabliert im thermophilen Archaeon Methanothermobacter thermautotrophicus ΔH / A new discovered repair mechanism for hydrolytically damaged DNA cytosine residues, established in the thermophilic archaeon Methanothermobacter thermautotrophicus ΔHSchomacher, Lars 01 November 2007 (has links)
No description available.
|
72 |
Molekulare Mechanismen des radiosensibilisierenden Effektes von Chloroquin beim Glioblastoma multiforme / Molecular mechanisms underlying radiosensitizing effects of Chloroquine in GliomaRübsam, Anne 28 October 2013 (has links)
No description available.
|
73 |
Molecular Mechanisms Associated with Chromosomal and Microsatellite Instability in Sporadic Glioblastoma multiformeMartinez, Ramon, Schackert, Hans-K., Plaschke, Jens, Baretton, Gustavo, Appelt, Hella, Schackert, Gabriele 12 February 2014 (has links) (PDF)
Objective: Two chromosomal instability (CIN) pathways are described in glioblastoma multiforme (GBM), type 1 and type 2, which can be observed in up to 70% of the cases. Microsatellite instability (MSI) plays a pathogenic role in sporadic cancers such as colon, gastric and endometrial carcinomas with deficient mismatch repair (MMR). We aimed to perform a comprehensive analysis of the relationship between CIN and MSI mechanisms in sporadic glioblastomas.
Methods: 129 GBMs were examined (109 newly diagnosed and 20 relapses) investigating MSI, immunohistochemical expression of MMR proteins as well as sequencing and promoter methylation of hMLH1. We characterized the molecular changes frequently correlated with CIN in MSI+ GBMs and compared them with 26 microsatellite-stable tumors.
Results: Low-level MSI was observed in 11 of 129 (8.5%) cases and was higher in relapses than in primary GBMs (25 vs. 5.5%, p = 0.027). High-level MSI was not found in any case. A deficient expression of MLH1 and PMS2 without hMLH1 inactivation was observed only in one giant cell GBM. 55% of the MSI+ GBMs showed a profile which did not correspond to one of the known CIN pathways. An inverse association was observed between MSI and mutations of both p53 and PTEN.
Conclusions: Our data suggest that CIN and MSI contribute to the genomic instability in GBMs via independent pathways. Since MSI was significantly more frequent in relapses, it might play a role in the malignant progression of GBM. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
74 |
Reaction Paths of Repair Fragments on Damaged Ultra-low-k SurfacesFörster, Anja 16 February 2015 (has links) (PDF)
In the present work, the plasma repair for damaged ultra-low-k (ULK) materials, newly developed at the Fraunhofer ENAS, is studied with density functional theory (DFT) and molecular dynamic (MD) methods to obtain new insights into this repair mechanism. The ULK materials owe their low dielectric constant (k-value) to the insertion of k-value lowering methyl groups. During the manufacturing process, the ULK materials are damaged and their k-values increase due to the adsorbtion of hydroxyl groups (OH-damage) and hydrogen atoms (H-damage) that replaced themethyl groups.
The first investigation point is the creation of repair fragments. For this purpose the silylation molecules bis(dimethylamino)-dimethylsilane (DMADMS) and octamethylcyclotetrasiloxane (OMCTS) are fragmented. Here, only fragmentation reactions that lead to repair fragments that contain one silicon atom and at least one methyl group were considered. It is shown that the repair fragments that contain three methyl groups are preferred, especially in a methyl rich atmosphere.
The effectivity of the obtained repair fragments to cure an OH- and H-damage are investigated with two model systems. The first system consists of an assortment of small ULK-fragments, which is used to scan through the wide array of possible repair reactions. The second system is a silicon oxide cluster that investigates whether the presence of a cluster influences the reaction energies.
In both model systems, repair fragments that contain three methyl groups or two oxygen atoms are found to be most effective. Finally, the quantum chemical results are compared to experimental findings to get deeper insight into the repair process.
|
75 |
The intermediate filament synemin promotes non-homologous end joining in an ATM-dependent mannerDeville, Sara Sofia 07 October 2020 (has links)
Background: Therapy resistance is a great challenge in cancer treatment. Among numerous factors, cell adhesion to extracellular matrix is a well-known determinant of radiochemo-resistance. It has been shown that targeting focal adhesion proteins (FAPs), e.g. β1 integrin, enhances tumor cell radio(chemo)sensitivity in various entities such as head and neck squamous cell carcinoma (HNSCC), lung carcinoma, glioblastoma, breast carcinoma and leukemia. Previous studies demonstrated a functional crosstalk between specific FAPs and DNA repair processes; however, the molecular circuitry underlying this crosstalk remains largely unsolved. Hence, this study in HNSCC aimed to identify alternative FAPs associated with DNA damage repair mechanisms and radioresistance. Materials and Methods: A novel 3D High Throughput RNAi Screen (3DHT-RNAi-S) using laminin-rich extracellular matrix (lrECM) was established to determine radiation-induced re-sidual DNA double strand breaks (DSBs; foci assay) and clonogenic radiation survival. In the screen, we used UTSCC15 HNSSC cells stably expressing the DSB marker protein 53BP1 tagged to pEGFP. Validations were performed in 10 additional HNSCC cell lines (Cal33, FaDu, SAS, UTSCC5, UTSCC8, UTSCC14, UTSCC15, UTSCC45 and XF354fl2) grown in 3D lrECM. Immunofluorescence staining, immunoblotting, chromatin fractionation were utilized to evaluate protein expression, dynamics and kinetics post irradiation. Investigations of molecular mechanisms of DNA repair and radio(chemo)resistance employed DSB repair reporter assays for non-homologous end joining (NHEJ) and homologous recombination (HR), cell cycle analysis, chromatin fractionation levels evaluation and kinase activity profiling (PamGene) upon protein knockdown in combination with/-out X-ray exposure. Foci assay and clonogenic survival assay were performed after single or multiple knockdowns of synemin and associated proteins such as DNA-PKcs and c-Abl. Protein-protein interactions between synemin and associated proteins were determined using immunoprecipitation and proximity ligation assay. Mutant/depletion constructs of synemin (ΔLink-Tail, ΔHead-Link, Synemin_301-961, Synemin_962-1565, S1114A and S1159A) were generated in order to identify essential synemin’s sites controlling DNA repair functions. Results: Among the targets found in the 3DHT-RNAi-S, synemin was one of the most promising FAP candidates to determine HNSCC cell survival and DNA damage repair. Synemin silencing radiosensitized HNSCC cells, while its exogenous overexpression induced radio-protection. Radiation induced an increased synemin/chromatin interaction and a marked ac-cumulation of synemin in the perinuclear area. Intriguingly, synemin depletion elicited a 40% reduction in NHEJ activity without affecting HR or Alt-EJ. In line, ATM, DNA-PKcs and c-Abl phosphorylation as well as Ku70 expression strongly declined in synemin depleted and irra-diated cells relative to controls, whereas an opposite effect was observed under synemin overexpression. Single, double and triple depletion of synemin, DNA-PKcs and c-Abl resulted in a similar radiosensitizing effect and DSB levels as detected upon single knockdown of synemin, describing its upstream role. In kinome analysis, tyrosine kinases showed signifi-cantly reduced activity after synemin silencing relative to controls. Furthermore, immunoprecipitation assays revealed a protein complex formed between synemin, DNA-PKcs and c-Abl under pre- and post-irradiation conditions. This protein complex dispersed when ATM was pharmacologically inhibited, implying synemin function to be dependent on ATM kinase activity. By means of the different mutation/deletion constructs of synemin, the phosphorylation site at serine 1114 located on the distal portion of synemin’s tail was identified as essential protein-protein interaction site for synemin’s function in DNA repair. Conclusions: The established 3DHT-RNAi-S provides a robust screening platform for identifying novel targets involved in therapy resistance. Based on this screen and detailed mechanistic analyses, the intermediate filament synemin was discovered as a novel important determinant of DNA repair, tyrosine kinase activity and radiochemoresistance of HNSCC cells. These results further support the notion that DNA repair is controlled by cooperative interactions between nuclear and cytoplasmic proteins.
|
76 |
Translation and optimization of a gamma H2AX foci assay for the prediction of intrinsic radiation sensitivityRassamegevanon, Treewut 27 May 2020 (has links)
Radiotherapy remains one of the most important treatment modalities for cancer therapy. Malignant tumors show an extended spectrum of intrinsic radiation sensitivity even among tumors of the same entity or with similar histological features. Predicting intrinsic radiation sensitivity might improve treatment outcome and allow individualized treatment. Hence, an assay that provides a predictive information of the tumor’s intrinsic radiation sensitivity is of great need. Histone H2AX, a histone variant of histone H2A family, is rapidly phosphorylated upon DNA double strand break (DSB) induction resulting in gamma H2AX (γH2AX). Gamma H2AX accumulates at DNA DSB sites and subsequently recruits DNA damage repair factors. Formation of γH2AX is visualized by an immunohistology-based approach and detected as foci under an epifluorescent microscope. Gamma H2AX foci represent DNA DSBs, while residual γH2AX foci (foci detected 24 h post irradiation) are considered as unrepaired damages. In previous studies, the γH2AX foci assay showed a high potential as a predictive method for radiosensitivity. This thesis aims to further translate and optimize the ex vivo γH2AX foci assay for a clinical applicability. In this study, all experiments were performed using human head and neck squamous cell carcinoma (hHNSCC) xenograft models. For ex vivo investigations, tumors on the hind legs of nude mice were excised and cut into multiple pieces, or fine-needle biopsies of the tumors were taken. Tumor biopsies were reoxygenated in culture medium for 10 h or 24 h followed by radiation exposure of 0 8 Gy. Tumor biopsies were fixed and embedded in paraffin 24 h post irradiation. For the γH2AX foci assay under in vivo conditions, tumors-bearing mice were irradiated with single doses of 0 8 Gy. Tumors were excised, fixed, and paraffin embedded 24 h post irradiation. Manual quantification of γH2AX foci was performed exclusively in perfused areas, which were identified by pimonidazole (hypoxic marker) and BrdU (proliferation marker) staining. Foci number was corrected, normalized, and statistically analyzed by a linear mixed effects model (LMEM), linear regression model or analysis of covariance.
To investigate tumor heterogeneity in the ex vivo γH2AX foci assay, γH2AX foci were enumerated in four equally treated tumor specimens per group i.e. unirradiated and ex vivo irradiated with 4 Gy. Strong intratumoral heterogeneity in γH2AX foci was determined with a minor intertumoral heterogeneity. No significant effect of reoxygenation between 10 h or 24 h was observed, enhancing clinical practicability of the assay. The effect of experimental settings was studied by analyzing data from this study (ex vivo) and from comparable published data (in vivo) with LMEM. Radiation induced nuclear area alteration was detected in some of the evaluated tumor models in under both experimental conditions. A greater intra and intertumoral heterogeneity were observed in the ex vivo set up compared to the in vivo set up. Radiation response determined by the γH2AX foci assay in ex vivo irradiated biopsies and in the corresponding in vivo irradiated tumors was evaluated. Between in vivo and ex vivo, four out of five tumor models showed comparable slopes of dose response curves (SDRC) of normalized and corrected γH2AX foci. SDRC of normalized γH2AX foci was able to classify tumors according to their intrinsic radiation sensitivity (TCD50). In conclusion, the ex vivo γH2AX foci assay holds a promising potential for predicting radiation sensitivity in solid tumors. The comparable radiation response assessed by γH2AX foci of in vivo irradiated tumors and the matching ex vivo irradiated tumor biopsies supports clinical applicability of the assay. Using SDRC of γH2AX foci as a predictor of radiosensitivity, radioresistant and radiosensitive tumors could be classified. The significant intratumoral heterogeneity in the ex vivo γH2AX foci assay suggests a limited representativeness of a single biopsy for radiosensitivity prediction. Additionally, the change of tumor microenvironment modulated cellular adaptation and DNA damage repair capability. The outcomes suggested that a sufficient number of cells, regions of interest, and biopsies are required to obtain a solid prediction.:Contents
List of Abbreviations
List of Figures
List of Tables
1. Introduction
1.1 Effect of ionizing radiation on cellular level
1.1.1 Radiation induces cell death
1.1.2 Cell-cycle arrest mediated by radiation
1.2 DNA damage repair
1.2.1 Non homologous end joining (NHEJ)
1.2.2 Homologous recombination (HR)
1.2.3 Base damage repair and single strand break repair
1.2.4 Role of γH2AX in DNA damage repair
1.3 Prediction of tumor radioresponsiveness
1.3.1 Prediction of tumor radiation sensitivity by γH2AX
2 Tumor heterogeneity determined with a γH2AX foci assay: A study in human head and neck squamous cell carcinoma (hHNSCC)
2.1 Summary of the publication
3 Heterogeneity of γH2AX foci increases in ex vivo biopsies relative to in vivo tumors.
3.1 Summary of the publication
4 Comparable radiation response of ex vivo and in vivo irradiated tumor samples determined by residual γH2AX foci
4.1 Summary of the manuscript
5 Discussion
5.1 Tumor heterogeneity in γH2AX foci assay
5.2 Alteration of nuclear area post irradiation
5.3 Clinical relevance of the γH2AX foci assay
5.4 Technical challenges and limitations of the assay
5.5 Conclusion and Outlook
6 Abstract
7 Zusammenfassung
8 Bibliography
Acknowledgement
Appendices
Part A: Materials
A.1 Tumor lines
A.2 Chemicals and Materials
A.3 Devices and Software
Part B: Supplementary materials
B.1 Supplementary materials of publication I
B.2 Supplementary materials of publication II
B.3 Supplementary materials of manuscript
|
77 |
Molecular Mechanisms Associated with Chromosomal and Microsatellite Instability in Sporadic Glioblastoma multiformeMartinez, Ramon, Schackert, Hans-K., Plaschke, Jens, Baretton, Gustavo, Appelt, Hella, Schackert, Gabriele January 2004 (has links)
Objective: Two chromosomal instability (CIN) pathways are described in glioblastoma multiforme (GBM), type 1 and type 2, which can be observed in up to 70% of the cases. Microsatellite instability (MSI) plays a pathogenic role in sporadic cancers such as colon, gastric and endometrial carcinomas with deficient mismatch repair (MMR). We aimed to perform a comprehensive analysis of the relationship between CIN and MSI mechanisms in sporadic glioblastomas.
Methods: 129 GBMs were examined (109 newly diagnosed and 20 relapses) investigating MSI, immunohistochemical expression of MMR proteins as well as sequencing and promoter methylation of hMLH1. We characterized the molecular changes frequently correlated with CIN in MSI+ GBMs and compared them with 26 microsatellite-stable tumors.
Results: Low-level MSI was observed in 11 of 129 (8.5%) cases and was higher in relapses than in primary GBMs (25 vs. 5.5%, p = 0.027). High-level MSI was not found in any case. A deficient expression of MLH1 and PMS2 without hMLH1 inactivation was observed only in one giant cell GBM. 55% of the MSI+ GBMs showed a profile which did not correspond to one of the known CIN pathways. An inverse association was observed between MSI and mutations of both p53 and PTEN.
Conclusions: Our data suggest that CIN and MSI contribute to the genomic instability in GBMs via independent pathways. Since MSI was significantly more frequent in relapses, it might play a role in the malignant progression of GBM. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
78 |
Loss of heterozygosity in acute myeloid leukaemia with normal karyotypeTraikov, Sofia 02 November 2009 (has links)
Loss of heterozygosity (LOH) is detectable in many forms of cancer including leukaemia. It contributes to tumorigenesis through the loss of one of the two alleles of one tumor suppressor gene at a given locus, caused by deletion or uniparental disomy (UPD). UPD can only be the result of homologous recombination. Little is known about the mechanisms of UPD and what connection this aberration has with the outcome of this disease.
In this study, 146 patients with primary AML were analysed using a novel technique based on single nucleotide polymorphisms (SNPs). Leukaemic cells and healthy T-cells from each patient were obtained using FACS-Vantage cell sorting. In cases with very few sorted cells whole genome preamplification was done. Genome-wide SNP analysis was carried out according to the standard GeneChip Mapping Assay protocol (Affymetrix, USA) using the Human Mapping 10K Arrays. Moreover, the impact of the FLT3-ITD mutation on the homologous recombination using pmHPRT-DRGFP /pCbASce vectors system and yHA2x assay was investigated.
Of 146 patients with normal karyotype LOH was found in 30 cases. The potential LOH regions, were confirmed by microsatellite analysis of short tandem repeat (STR) markers. In 21 of these cases STR-analysis of T-cells, representing the corresponding tumor-free material, confirmed the regions of partial UPD. This aberration affected different chromosomes, but most commonly chr. 2, 6, 11, 21, 13, and 7, and covered between 11.5 and 88 Mb. Interestingly, in 6 LOH cases, long stretches of homozygosity present at the same positions as in the healthy cells and in the blasts were found. The impact of this phenomenon is unknown. Additionally, chromosome losses were detected in 3 patients classified with normal karyotype according to current methods. These 9 cases were not included in the UPD positive group.
No differences were observed regarding any clinical factors including age, WBC-counts and sex. The FAB M1 subtype was observed in 47.6% of the UPD positive patients, compared to only 19.2% of the UPD negative patients (P=0.04, n=146). In addition, no correlation between FLT3-ITD, MLL-PTD and NPM1 mutations in the UPD patients was found, but the data indicate that patients with UPD have a higher rate of treatment failure.
Moreover, in this study the relationship between UPD and gene aberrations was able to be confirmed. In some cases, UPD found on chromosomes 21, 19 and 11 was correlated with mutations in the RUNX1, CEBPA and WT genes, respectively. Furthermore, AML cases with and without UPD showed different but specific gene expression profiles, revealing different expression levels for genes involved in double strand break repairs.
Furthermore, it was found that different mutations could be responsible for the increase in efficiency of HR, such as FLT3-ITD or BCR-ABL. Moreover, cells with a FLT3-ITD mutation (without wt expression) rapidly increased the HR efficiency compared with heterozygous (FLT3-ITD/wt) cells. Preliminary results showed that the high repair efficiency was mainly dependent on the translocation of RAD51.
In conclusion, SNP array technology allow the identification and mapping of LOH in AML patients with normal karyotype. The obtained data also point out the necessity of analysing tumour-free material to confirm the somatic origin of the alteration. Furthermore, the available results indicate that compared to patients without UPD, patients with UPD have a higher relapse rate, which might be used as a prognostic marker in the future. Also, it could be hypothesized that downregulation of RAD51 (for example by FLT3 inhibition) might be beneficial DNA damage occurs through the genotoxic agent by reducing the relapse risk of AML.
|
79 |
Privacy-Preserving Ontology Publishing:: The Case of Quantified ABoxes w.r.t. a Static Cycle-Restricted EL TBox: Extended VersionBaader, Franz, Koopmann, Patrick, Kriegel, Francesco, Nuradiansyah, Adrian, Peñaloza, Rafael 20 June 2022 (has links)
We review our recent work on how to compute optimal repairs, optimal compliant anonymizations, and optimal safe anonymizations of ABoxes containing possibly anonymized individuals. The results can be used both to remove erroneous consequences from a knowledge base and to hide secret information before publication of the knowledge base, while keeping as much as possible of the original information. / Updated on August 27, 2021. This is an extended version of an article accepted at DL 2021.
|
80 |
Untersuchungen zum Einfluss von 211At, 188Re und Doxorubicin auf die DNA-Schädigung humaner LymphozytenRunge, Roswitha 01 December 2010 (has links) (PDF)
Ionisierende Strahlung verursacht in Abhängigkeit von den strahlenphysikalischen Eigenschaften der Radionuklide Zellschäden unterschiedlicher Komplexität. An humanen Lymphozyten wurde untersucht, ob die biologische Wirksamkeit von Alpha- und Betastrahlung sowie der Einfluss von Doxorubicin der Qualität des Strahlenschadens zugewiesen werden kann. Die DNA-Schäden und deren Reparatur wurden mit zellbiologischen Methoden quantifiziert.
|
Page generated in 0.0336 seconds