• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Neurospora crassa and Fusarium graminearum mutants defective in repeat-induced point mutation

Pomraning, Kyle R. 10 December 2014 (has links)
Mutation of repetitive DNA by repeat-induced point mutation (RIP) is a process that occurs in many filamentous fungi of the Ascomycota during the sexual cycle. Concurrently, direct DNA repeats are often deleted by homologous recombination at high frequency during the sexual cycle. Thus, the processes of RIP and deletion compete to either mutate or remove repetitive DNA from the genome of filamentous fungi during sexual cycles. Both processes contribute to genome streamlining by controlling proliferation of transposable elements and by limiting expansion of gene families. While the genetic requirements for deletion by homologous recombination are well known, the mechanism behind the specific detection and mutation of repetitive DNA by RIP has yet to be elucidated as only a single gene essential for RIP, rid, has been identified. We have developed Fusarium graminearum as a model organism for the study of RIP by showing that it mutates repetitive DNA frequently during the sexual cycle and that the mutations due to RIP are dependent on rid. Further, we have sequenced a genetic mapping strain of F. graminearum (00-676-2) and identified 62,310 single nucleotide polymorphisms (SNPs) compared to the reference strain (PH-1). The SNP map will be useful for quickly mapping new mutants by bulk segregant analysis and high-throughput sequencing for which bioinformatic tools were specifically developed. The groundwork has thus been laid for identification of novel RIP mutants in F. graminearum, which being homothallic has a major advantage for identification of recessive mutations. We used a forward genetics approach to shed light on the mechanism of RIP in Neurospora crassa. Two rrr mutants that dominantly r��educe R��IP and r��ecombination were characterized and identified as different mutated alleles of the same gene, rrr-1[superscript L496P] and rrr-1[superscript G325N] by bulk segregant analysis and high-throughput sequencing. Bioinformatic characterization suggests RRR-1 belongs to a previously uncharacterized group of dynamin-like proteins, which are generally involved in membrane fission and fusion. RRR-1-GFP localizes to the nuclear membrane, but not DNA, suggesting it affects RIP and recombination frequency indirectly by altering nuclear membrane dynamics during sexual development and thereby altering temporal aspects of RIP and recombination. We used a reverse genetics approach to determine whether high frequency RIP and homologous recombination of repetitive DNA during the sexual cycle are linked mechanistically or spatio-temporally. We tested strains where genes important for deletion by homologous recombination were knocked out and found all to be completely RIP competent except mre11, which, while sterile in homozygous deletion crosses, displayed lower RIP frequency in heterozygous crosses. This suggests that mre11 has roles in homologous recombination as well as non-homologous end joining may be important for RIP. Collectively, this work developed methods for efficiently mapping mutations and identified a novel protein that reduces RIP and recombination frequency but did not identify any mechanistic link between the two processes. / Graduation date: 2013 / Access restricted to the OSU Community at author's request from Dec. 10, 2012 - Dec. 10, 2014
2

Fonctions et organisations de l’hétérochromatine au cours du développement sexué chez le champignon filamenteux Podospora anserina / Heterochromatin Functions and Organizations during Sexual Development in the Filamentous Fungus Podospora anserina

Carlier, Florian 26 November 2018 (has links)
Pour se défendre des effets délétères des éléments transposables, les pezizomycotina ont développé un système de défense génétique et épigénétique appelé « Repeat Induced Point Mutation » (RIP). Chez N. crassa, le RIP survient dans la cellule dicaryotique avant la caryogamie et conduit à la méthylation de novo des cytosines (5mC) inclues dans les séquences répétées de chacun des noyaux parentaux haploïdes. De plus, certaines de ces cytosines sont la cible d’un processus de mutation qui les transforme en thymines. Cette étape est suivie par la mise en place locale de l’hétérochromatine constitutive permettant une répression transcriptionnelle durable des séquences cibles du RIP au cours des divisions nucléaires. L’acteur majeur du RIP correspond à une cytosine méthyltransférase putative appelée RID (RIP Defective). Bien que son génome ne montre pas une quantité significative de 5mC, l’inactivation de PaRid chez Podospora anserina aboutit à un blocage du développement sexué survenant après la fécondation. Dans ce contexte, nous avons voulu déterminer si la fonction de PaRid dans le développement sexué consiste à éteindre l’expression de gènes cibles via l’installation de foyers d’hétérochromatine constitutive aux loci concernés. Pour ce faire, nous avons identifié les gènes PaKmt1 et PaHP1, codant respectivement l’histone méthyltransférase PaKmt1 (l’homologue de SU(VAR)39 qui catalyse la tri-méthylation du résidu H3K9 (H3K9me3) et PaHP1 (l’homologue de Heterochromatin Protein 1 qui se lie à H3K9me3). Les deux protéines interviennent dans une même voie de régulation qui aboutit à la mise en place de l’hétérochromatine constitutive. Par opposition, PaKmt6, homologue de l’histone méthyltransférase E(Z), correspond à la sous-unité catalytique du complexe PRC2 qui catalyse la marque H3K27me3 pour permettre l’établissement de l’hétérochromatine facultative. Nos résultats ont montré que l’absence de PaKmt1 et PaHP1 ne provoquent que des défauts mineurs. A l’inverse, l’inactivation du gène PaKmt6 conduit à un ensemble de défauts sévères : croissance végétative altérée, surproduction des gamètes mâles, malformations critiques des fructifications, production très réduite d’ascospores dont la germination est pour partie déficiente. Une étude d’épistasie a montré que les protéines PaRid et PaKmt6 interviennent chacune dans deux voies développementales distinctes. Par ailleurs, nous avons établi par immuno-précipitation de la chromatine les profils de distribution à l’échelle du génome entier des modifications H3K9me3, H3K27me3 et H3K4me3. Caractéristique rare, la marque H3K9me3 colocalise avec H3K27me3 sur des gènes transcriptionnellement réprimés et les séquences répétées ripées. Conformément à sa fonction canonique, H3K4me3 est présente en 5’ des gènes transcrits et est exclue des domaines H3K9me3 et H3K27me3. Comme attendue, PaKmt6 est essentielle à la mise en place de la marque H3K27me3, mais, de manière surprenante, elle serait aussi impliquée dans le dépôt et/ou le maintien d’une partie des marques H3K9me3, dévoilant ainsi une voie de méthylation non canonique de ces résidus. / In pezizomycotina, transposable elements are targeted by a genome defense system named Repeat Induced Point Mutation (RIP). First described in Neurospora crassa, RIP occurs before karyogamy in each parental haploid nucleus of the dikaryotic cells and results, within the repeats, in de novo methylation of cytosine (5mC) and mutations, mainly C to T transitions. This initial step triggers local assembly of constitutive heterochromatin, which allows transcriptional gene silencing. RID (RIP Defective) is a putative cytosine methyltransferase essential for RIP. Despite the absence of 5mC in its genome, PaRid inactivation in Podospora anserina results in sexual reproduction arrest right after fertilization. In this context, we asked whether PaRid is required to silence expression of some of sexual development-specific genes by nucleation of constitutive heterochromatin. To this end, we identified PaKmt1 and PaHp1 genes encoding respectively the histone methyltransferase PaKmt1 (SU(VAR)39 homologue protein) and the heterochromatin protein 1 (PaHP1). To assemble constitutive heterochromatin, PaKmt1 catalyses tri-methylation of H3K9 (H3K9me3), latter on bound by PaHP1. By contrast, the E(Z) histone methyltransferase homologue PaKmt6, as part of the PRC2 complex, catalyses tri-methylation of H3K27 (H3K27me3) to form facultative heterochromatin. Our results showed that loss of either PaKmt1 or PaHP1 does not cause major defects. Conversely, PaKmt6 gene inactivation results in severe defects: altered mycelium and vegetative growth rate, overproduction of male gamete, development of crippled fructifications, reduced production ascospores, part of which does not germinate. Furthermore, epistatic study showed that PaRid and PaKmt6 likely act in two different developmental pathways, with respect to sexual reproduction. In addition, using chromatin immuno-precipitation we characterized H3K9me3, H3K27me3 and H3K4me3 genome-wide distribution patterns. We observed an uncommon overlapping distribution between H3K9me3 and H3K27me3 on transcriptionally repressed genes and RIP target repeats. As expected, H3K4me3 localizes in 5’ of the transcribed genes and is excluded from the H3K9me3 and H3K27me3 domains. As expected, PaKmt6 is essential for H3K27me3 modification, but surprisingly, could also be responsible for some of the H3K9me3 setting up or maintenance.

Page generated in 0.1229 seconds