• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 7
  • 3
  • Tagged with
  • 20
  • 20
  • 11
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Les contours actifs basés région avec a priori de bruit, de texture et de forme : Application à l'échocardiographie

Lecellier, François 15 May 2009 (has links) (PDF)
L'objectif de ce travail est la conception et l'implémentation d'une méthode de segmentation générique d'images médicales qui puisse s'adapter à l'évolution des modalités et des besoins exprimés par les médecins. Partant ainsi du constat que la segmentation d'images médicales nécessite l'introduction de connaissances, nous avons opté pour une méthode pouvant combiner avantageusement les informations de bruit, de texture et de forme : les contours actifs basés région. Cette méthode consiste à déformer une courbe vers l'objet à segmenter. Ces déformations sont déduites de la dérivation d'une fonctionnelle à optimiser. <br />Notre contribution principale se situe au niveau de l'obtention de critères généraux permettant les ajouts d'informations a priori. Concernant le modèle de bruit, le critère consiste à considérer une fonction générale d'une loi paramétrique appartenant à la famille exponentielle. Nous avons mis en évidence que l'estimation des paramètres de la loi intervient de façon primordiale dans le calcul de l'équation d'évolution du contour. Pour le modèle de texture, l'absence de représentation discriminant de manière générale les textures, nous a conduit à utiliser une approche non paramétrique reposant sur les représentations parcimonieuses. Enfin l'a priori de forme utilise un critère basé sur les moments de Legendre. Les différents a priori sont ensuite reliés par le biais d'un algorithme de minimisation alternée ce qui permet de pondérer efficacement les termes d'attache aux données photométriques et l'a priori géométrique.<br />Les trois approches ont été testées et validées séparément puis de manière combinée sur des images synthétiques et réelles.
12

Estimation non-ambigüe de cibles grâce à une représentation parcimonieuse Bayésienne d'un signal radar large bande / Unambiguous target estimation using Bayesian sparse representation of a wideband radar signal

Lasserre, Marie 20 November 2017 (has links)
Les travaux menés lors de cette thèse s’inscrivent dans le cadre général de la détection de cibles en utilisant une forme d’onde non-conventionnelle large bande. L’utilisation d’une forme d’onde large bande à faible PRF a été proposée par le passé une alternative aux traitements multi-PRF qui limitent le temps d’illumination de la scène. En effet, l’augmentation de la bande instantanée permet d’obtenir une meilleure résolution distance ; les cibles rapides sont alors susceptibles de migrer lors du temps de traitement, mais ce phénomène de couplage distance-vitesse peut être mis à profit pour lever les ambiguïtés. L’objectif de la thèse est alors de développer, pour une forme d’onde large bande avec faible PRF, des traitements prenant en compte la migration des cibles et capables de lever les ambiguïtés vitesse dans des scénarios réalistes. Les travaux se basent sur un algorithme de représentation parcimonieuse non-ambigüe de cibles migrantes, dans un cadre algorithmique Bayésien. Cet algorithme est en revanche développé sous certaines hypothèses, et des travaux de robustification sont alors entrepris afin de l’utiliser sur des scénarios plus réalistes. Dans un premier temps, l’algorithme est robustifié au désalignement des cibles par rapport à la grille d’analyse, puis modifié pour prendre également en compte une possible composante diffuse de bruit. Il est également remanié pour estimer correctement une scène comportant une forte diversité de puissance, où des cibles fortes masquent potentiellement des cibles faibles. Les différents algorithmes sont validés à la fois sur des données synthétiques et expérimentales. / The work conducted during this PhD falls within the general context of radar target detection using a non-conventional wideband waveform. More precisely, the use of a low-PRF wideband waveform has been proposed in the past as an alternative to the classical staggered-PRF processing used to mitigate velocity ambiguities that limits dwell time. Increasing the instantaneous bandwidth improves range resolution; fast moving targets are then likely to migrate during the coherent processing interval. This range-velocity coupling can then be used to mitigate velocity ambiguities. This PhD thesis aims at developing an algorithm able to provide unambiguous estimation of migrating targets using a low-PRF wideband waveform. It is based on a sparse representation algorithm able to unambiguously estimate migrating targets, within a Bayesian framework. However, this algorithm is developed under some hypothesis, and then requires robustification to be used on more realistic scenarii. First, the algorithm is robustified to the case of off-grid targets, and then upgraded to take into account a possible diffuse clutter component. On the other hand, the reference algorithm is modified to accurately estimate high dynamic range scenes where weak targets compete with strong targets. All the developed algorithms have been validated on synthetic and experimental data recorded by the PARSAX radar from the Technical University of Delft, The Netherlands.
13

Nouvelles méthodes de représentations parcimonieuses ; application à la compression et l'indexation d'images

Zepeda Salvatierra, Joaquin 28 October 2010 (has links) (PDF)
Une nouvelle structure de dictionnaire adaptés aux décompositions itératives de type poursuite, appelée un Iteration-Tuned Dictionary (ITD), est présentée. Les ITDs sont structurés en couche, chaque couche se composant d'un ensemble de dictionnaires candidats. Les décompositions itératives basées ITD sont alors réalisées en sélectionnant, à chaque itération i, l'un des dictionnaires de la i-ième couche. Une structure générale des ITDs est proposée, ainsi qu'une variante structurée en arbre appelée Tree-Structured Iteration-Tuned Dictionary (TSITD) et une version contrainte de cette dernière, appelée Iteration-Tuned and Aligned Dictionary (ITAD). Ces structures sont comparées à plusieurs méthodes de l'état de l'art et évaluées dans des applications de débruitage et de compression d'images. Un codec basé sur le schéma ITAD est également présenté et comparé à JPEG2000 dans des évaluations qualitatives et quantitatives. Dans le contexte de l'indexation d'images, un nouveau système de recherche approximative des plus proches voisins est également introduit, qui utilise les représentations parcimonieuses pour réduire la complexité de la recherche. La méthode traite l'instabilité dans la sélection des atomes lorsque l'image est soumise à de faibles transformations affines. Un nouveau système de conditionnement des données est également introduit, permettant de mieux distribuer les données sur la sphère unitaire tout en préservant leurs distances angulaires relatives. Il est montré que cette méthode améliore le compromis complexité/performance de la recherche approximative basée décompositions parcimonieuses.
14

Sparse representations over learned dictionary for document analysis / Présentations parcimonieuses sur dictionnaire d'apprentissage pour l'analyse de documents

Do, Thanh Ha 04 April 2014 (has links)
Dans cette thèse, nous nous concentrons sur comment les représentations parcimonieuses peuvent aider à augmenter les performances pour réduire le bruit, extraire des régions de texte, reconnaissance des formes et localiser des symboles dans des documents graphiques. Pour ce faire, tout d'abord, nous donnons une synthèse des représentations parcimonieuses et ses applications en traitement d'images. Ensuite, nous présentons notre motivation pour l'utilisation de dictionnaires d'apprentissage avec des algorithmes efficaces pour les construire. Après avoir décrit l'idée générale des représentations parcimonieuses et du dictionnaire d'apprentissage, nous présentons nos contributions dans le domaine de la reconnaissance de symboles et du traitement des documents en les comparants aux travaux de l'état de l'art. Ces contributions s'emploient à répondre aux questions suivantes: La première question est comment nous pouvons supprimer le bruit des images où il n'existe aucune hypothèse sur le modèle de bruit sous-jacent à ces images ? La deuxième question est comment les représentations parcimonieuses sur le dictionnaire d'apprentissage peuvent être adaptées pour séparer le texte du graphique dans des documents? La troisième question est comment nous pouvons appliquer la représentation parcimonieuse à reconnaissance de symboles? Nous complétons cette thèse en proposant une approche de localisation de symboles dans les documents graphiques qui utilise les représentations parcimonieuses pour coder un vocabulaire visuel / In this thesis, we focus on how sparse representations can help to increase the performance of noise removal, text region extraction, pattern recognition and spotting symbols in graphical documents. To do that, first of all, we give a survey of sparse representations and its applications in image processing. Then, we present the motivation of building learning dictionary and efficient algorithms for constructing a learning dictionary. After describing the general idea of sparse representations and learned dictionary, we bring some contributions in the field of symbol recognition and document processing that achieve better performances compared to the state-of-the-art. These contributions begin by finding the answers to the following questions. The first question is how we can remove the noise of a document when we have no assumptions about the model of noise found in these images? The second question is how sparse representations over learned dictionary can separate the text/graphic parts in the graphical document? The third question is how we can apply the sparse representation for symbol recognition? We complete this thesis by proposing an approach of spotting symbols that use sparse representations for the coding of a visual vocabulary
15

Approches bayésiennes non paramétriques et apprentissage de dictionnaire pour les problèmes inverses en traitement d'image / Bayesian nonparametrics approaches and dictionary learning for inverse problems in image processing

Dang, Hong-Phuong 01 December 2016 (has links)
L'apprentissage de dictionnaire pour la représentation parcimonieuse est bien connu dans le cadre de la résolution de problèmes inverses. Les méthodes d'optimisation et les approches paramétriques ont été particulièrement explorées. Ces méthodes rencontrent certaines limitations, notamment liées au choix de paramètres. En général, la taille de dictionnaire doit être fixée à l'avance et une connaissance des niveaux de bruit et éventuellement de parcimonie sont aussi nécessaires. Les contributions méthodologies de cette thèse concernent l'apprentissage conjoint du dictionnaire et de ces paramètres, notamment pour les problèmes inverses en traitement d'image. Nous étudions et proposons la méthode IBP-DL (Indien Buffet Process for Dictionary Learning) en utilisant une approche bayésienne non paramétrique. Une introduction sur les approches bayésiennes non paramétriques est présentée. Le processus de Dirichlet et son dérivé, le processus du restaurant chinois, ainsi que le processus Bêta et son dérivé, le processus du buffet indien, sont décrits. Le modèle proposé pour l'apprentissage de dictionnaire s'appuie sur un a priori de type Buffet Indien qui permet d'apprendre un dictionnaire de taille adaptative. Nous détaillons la méthode de Monte-Carlo proposée pour l'inférence. Le niveau de bruit et celui de la parcimonie sont aussi échantillonnés, de sorte qu'aucun réglage de paramètres n'est nécessaire en pratique. Des expériences numériques illustrent les performances de l'approche pour les problèmes du débruitage, de l'inpainting et de l'acquisition compressée. Les résultats sont comparés avec l'état de l'art.Le code source en Matlab et en C est mis à disposition. / Dictionary learning for sparse representation has been widely advocated for solving inverse problems. Optimization methods and parametric approaches towards dictionary learning have been particularly explored. These methods meet some limitations, particularly related to the choice of parameters. In general, the dictionary size is fixed in advance, and sparsity or noise level may also be needed. In this thesis, we show how to perform jointly dictionary and parameter learning, with an emphasis on image processing. We propose and study the Indian Buffet Process for Dictionary Learning (IBP-DL) method, using a bayesian nonparametric approach.A primer on bayesian nonparametrics is first presented. Dirichlet and Beta processes and their respective derivatives, the Chinese restaurant and Indian Buffet processes are described. The proposed model for dictionary learning relies on an Indian Buffet prior, which permits to learn an adaptive size dictionary. The Monte-Carlo method for inference is detailed. Noise and sparsity levels are also inferred, so that in practice no parameter tuning is required. Numerical experiments illustrate the performances of the approach in different settings: image denoising, inpainting and compressed sensing. Results are compared with state-of-the art methods is made. Matlab and C sources are available for sake of reproducibility.
16

Adaptation Automatique de la Résolution pour l'Analyse et la Synthèse du Signal Audio

Liuni, Marco 09 March 2012 (has links) (PDF)
Dans cette thèse, on s'intéresse à des méthodes qui permettent de varier localement la résolution temps-fréquence pour l'analyse et la re-synthèse du son. En Analyse Temps-Fréquence, l'adaptativité est la possibilité de concevoir de représentations et opérateurs avec des caractéristiques qui peuvent être modifiées en fonction des objets à analyser: le premier objectif de ce travail est la définition formelle d'un cadre mathématique qui puisse engendrer des méthodes adaptatives pour l'analyse du son. Le deuxième est de rendre l'adaptation automatique; on établit des critères pour définir localement la meilleure résolution temps-fréquence, en optimisant des mesures de parcimonie appropriées. Afin d'exploiter l'adaptativité dans le traitement spectral du son, on introduit des méthodes de reconstruction efficaces, basées sur des analyses à résolution variable, conçues pour préserver et améliorer les techniques actuelles de manipulation du son. L'idée principale est que les algorithmes adaptatifs puissent contribuer à la simplification de l'utilisation de méthodes de traitement du son qui nécessitent aujourd'hui un haut niveau d'expertise. En particulier, la nécessité d'une configuration manuelle détaillée constitue une limitation majeure dans les applications grand public de traitement du son de haute qualité (par exemple: transposition, compression/dilatation temporelle). Nous montrons des exemples où la gestion automatique de la résolution temps-fréquence permet non seulement de réduire significativement les paramètres à régler, mais aussi d'améliorer la qualité des traitements.
17

Imagerie acoustique par approximations parcimonieuses des sources

Peillot, Antoine 20 November 2012 (has links) (PDF)
La description parcimonieuse des sources permet une approche nouvelle de l'analyse des champs acoustiques. Durant ce projet, nous avons appliqué ce principe à plusieurs scénarios classiques : l'holographie acoustique de champ proche, la localisation de sources simples ou complexes et l'identification de directivité de sources. Ces méthodes d'imagerie exigent la résolution de problèmes inverses, souvent mal posés, qui nécessitent l'utilisation conjointe de techniques de régularisation. De plus, pour capter l'information utile et assurer de bonnes performances de reconstruction, les techniques traditionnelles d'antennerie nécessitent le déploiement d'un grand nombre de microphones. Dans ces travaux, nous avons envisagé une approche originale de l'analyse des champs acoustiques basée sur l'approximation parcimonieuse des sources, ce qui agit comme un principe de régularisation. Cette formulation permet en outre de tirer profit de la méthode de "compressive sampling" (CS), qui permet de restreindre le nombre de mesures utiles à la résolution du problème inverse si la source à reconstruire admet une représentation suffisamment parcimonieuse. On montre que l'application du CS à l'holographie en champ proche de plaques homogènes et isotropes permet non seulement de mieux régulariser le problème par rapport aux techniques génériques classiques, mais également de diminuer fortement le nombre de microphones en sous-échantillonnant l'hologramme au-delà de la limite imposée par la théorie de Shannon. Le problème de localisation de sources, envisagée comme un problème parcimonieux, permet la localisation avec une haute résolution de sources corrélés, en champ proche comme en champ lointain. Les méthodes de reconstruction parcimonieuse permettent de structurer la base de parcimonie en l'enrichissant avec un modèle de décomposition des sources en harmoniques sphériques pour localiser et identifier la directivité de sources complexes. Ces études ont finalement nécessité le développement de techniques rapides de calibration en position et en gain d'antennes composées d'un grand nombre de microphones.
18

Une exploration des problèmes inverses par les représentations parcimonieuses et l'optimisation non lisse

Fadili, Jalal M. 26 March 2010 (has links) (PDF)
Ce mémoire résume mon parcours de recherche lors des dix dernières années. Ces travaux de recherche se trouvent à la croisée des chemins entre les mathématiques appliquées et le traitement du signal et des images. Ils s'articulent autour du triptyque: (i) modélisation stochastique-estimation statistique; (ii) analyse harmonique computationnelle-représentations parcimonieuses; (iii) optimisation. Ces trois piliers constituent le socle théorique de mes activités pour développer des approches originales capables de résoudre des problèmes classiques en traitement d'images comme les problèmes inverses en restauration et reconstruction, la séparation de sources, la segmentation, la détection, ou encore la théorie de l'échantillonnage compressé (compressed sensing). Ces travaux ont été appliqués à plusieurs modalités d'imagerie comme l'imagerie médicale et biomédicale (IRM fonctionnelle, échographie, microscopie confocale), le contrôle non destructif et l'imagerie astronomique.
19

Non-linear dimensionality reduction and sparse representation models for facial analysis / Réduction de la dimension non-linéaire et modèles de la représentations parcimonieuse pour l’analyse du visage

Zhang, Yuyao 20 February 2014 (has links)
Les techniques d'analyse du visage nécessitent généralement une représentation pertinente des images, notamment en passant par des techniques de réduction de la dimension, intégrées dans des schémas plus globaux, et qui visent à capturer les caractéristiques discriminantes des signaux. Dans cette thèse, nous fournissons d'abord une vue générale sur l'état de l'art de ces modèles, puis nous appliquons une nouvelle méthode intégrant une approche non-linéaire, Kernel Similarity Principle Component Analysis (KS-PCA), aux Modèles Actifs d'Apparence (AAMs), pour modéliser l'apparence d'un visage dans des conditions d'illumination variables. L'algorithme proposé améliore notablement les résultats obtenus par l'utilisation d'une transformation PCA linéaire traditionnelle, que ce soit pour la capture des caractéristiques saillantes, produites par les variations d'illumination, ou pour la reconstruction des visages. Nous considérons aussi le problème de la classification automatiquement des poses des visages pour différentes vues et différentes illumination, avec occlusion et bruit. Basé sur les méthodes des représentations parcimonieuses, nous proposons deux cadres d'apprentissage de dictionnaire pour ce problème. Une première méthode vise la classification de poses à l'aide d'une représentation parcimonieuse active (Active Sparse Representation ASRC). En fait, un dictionnaire est construit grâce à un modèle linéaire, l'Incremental Principle Component Analysis (Incremental PCA), qui a tendance à diminuer la redondance intra-classe qui peut affecter la performance de la classification, tout en gardant la redondance inter-classes, qui elle, est critique pour les représentations parcimonieuses. La seconde approche proposée est un modèle des représentations parcimonieuses basé sur le Dictionary-Learning Sparse Representation (DLSR), qui cherche à intégrer la prise en compte du critère de la classification dans le processus d'apprentissage du dictionnaire. Nous faisons appel dans cette partie à l'algorithme K-SVD. Nos résultats expérimentaux montrent la performance de ces deux méthodes d'apprentissage de dictionnaire. Enfin, nous proposons un nouveau schéma pour l'apprentissage de dictionnaire adapté à la normalisation de l'illumination (Dictionary Learning for Illumination Normalization: DLIN). L'approche ici consiste à construire une paire de dictionnaires avec une représentation parcimonieuse. Ces dictionnaires sont construits respectivement à partir de visages illuminées normalement et irrégulièrement, puis optimisés de manière conjointe. Nous utilisons un modèle de mixture de Gaussiennes (GMM) pour augmenter la capacité à modéliser des données avec des distributions plus complexes. Les résultats expérimentaux démontrent l'efficacité de notre approche pour la normalisation d'illumination. / Face analysis techniques commonly require a proper representation of images by means of dimensionality reduction leading to embedded manifolds, which aims at capturing relevant characteristics of the signals. In this thesis, we first provide a comprehensive survey on the state of the art of embedded manifold models. Then, we introduce a novel non-linear embedding method, the Kernel Similarity Principal Component Analysis (KS-PCA), into Active Appearance Models, in order to model face appearances under variable illumination. The proposed algorithm successfully outperforms the traditional linear PCA transform to capture the salient features generated by different illuminations, and reconstruct the illuminated faces with high accuracy. We also consider the problem of automatically classifying human face poses from face views with varying illumination, as well as occlusion and noise. Based on the sparse representation methods, we propose two dictionary-learning frameworks for this pose classification problem. The first framework is the Adaptive Sparse Representation pose Classification (ASRC). It trains the dictionary via a linear model called Incremental Principal Component Analysis (Incremental PCA), tending to decrease the intra-class redundancy which may affect the classification performance, while keeping the extra-class redundancy which is critical for sparse representation. The other proposed work is the Dictionary-Learning Sparse Representation model (DLSR) that learns the dictionary with the aim of coinciding with the classification criterion. This training goal is achieved by the K-SVD algorithm. In a series of experiments, we show the performance of the two dictionary-learning methods which are respectively based on a linear transform and a sparse representation model. Besides, we propose a novel Dictionary Learning framework for Illumination Normalization (DL-IN). DL-IN based on sparse representation in terms of coupled dictionaries. The dictionary pairs are jointly optimized from normally illuminated and irregularly illuminated face image pairs. We further utilize a Gaussian Mixture Model (GMM) to enhance the framework's capability of modeling data under complex distribution. The GMM adapt each model to a part of the samples and then fuse them together. Experimental results demonstrate the effectiveness of the sparsity as a prior for patch-based illumination normalization for face images.
20

Optimization framework for large-scale sparse blind source separation / Stratégies d'optimisation pour la séparation aveugle de sources parcimonieuses grande échelle

Kervazo, Christophe 04 October 2019 (has links)
Lors des dernières décennies, la Séparation Aveugle de Sources (BSS) est devenue un outil de premier plan pour le traitement de données multi-valuées. L’objectif de ce doctorat est cependant d’étudier les cas grande échelle, pour lesquels la plupart des algorithmes classiques obtiennent des performances dégradées. Ce document s’articule en quatre parties, traitant chacune un aspect du problème: i) l’introduction d’algorithmes robustes de BSS parcimonieuse ne nécessitant qu’un seul lancement (malgré un choix d’hyper-paramètres délicat) et fortement étayés mathématiquement; ii) la proposition d’une méthode permettant de maintenir une haute qualité de séparation malgré un nombre de sources important: iii) la modification d’un algorithme classique de BSS parcimonieuse pour l’application sur des données de grandes tailles; et iv) une extension au problème de BSS parcimonieuse non-linéaire. Les méthodes proposées ont été amplement testées, tant sur données simulées que réalistes, pour démontrer leur qualité. Des interprétations détaillées des résultats sont proposées. / During the last decades, Blind Source Separation (BSS) has become a key analysis tool to study multi-valued data. The objective of this thesis is however to focus on large-scale settings, for which most classical algorithms fail. More specifically, it is subdivided into four sub-problems taking their roots around the large-scale sparse BSS issue: i) introduce a mathematically sound robust sparse BSS algorithm which does not require any relaunch (despite a difficult hyper-parameter choice); ii) introduce a method being able to maintain high quality separations even when a large-number of sources needs to be estimated; iii) make a classical sparse BSS algorithm scalable to large-scale datasets; and iv) an extension to the non-linear sparse BSS problem. The methods we propose are extensively tested on both simulated and realistic experiments to demonstrate their quality. In-depth interpretations of the results are proposed.

Page generated in 0.1153 seconds