• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Piping Plover (Charadrius melodus) demography, behavior, and movement on the Outer Banks of North Carolina

Weithman, Chelsea E. 10 June 2019 (has links)
The Piping Plover (Charadrius melodus) is an imperiled shorebird that inhabits sandy beaches along the North American Atlantic Coast. The species' decline has been attributed to habitat loss, disturbance, and predation throughout its range, although most conservation efforts have focused on increasing reproductive output during the breeding season. On the coast of North Carolina, Piping Plovers breed in areas with large amounts of recreational and tourism use. Beach recreation is known to reduce nest success, chick survival, and potentially fitness in other parts of the species' range. To reduce potential negative effects from human activities on breeding Piping Plovers, managers close areas to pedestrian and vehicle access using exclusion buffers delineated by symbolic fencing. However, the reproductive success and population size of Piping Plovers in parts of North Carolina has not appeared to increase as a result of these management strategies, despite the importance of the park and its protections to these birds on their southward migration in the fall. To understand how disturbance and attempts to mitigate it affected plover demography, we examined Piping Plover population dynamics, brood movement, and migration in North Carolina from 2015–2017. We monitored 46 nests and 19 broods, and we used a logistic exposure nest survival model and Cormack-Jolly-Seber model to estimate reproductive success. We uniquely banded 77 adults and 49 chicks to understand annual survival and fidelity rates using a live encounter mark-recapture model. During the pre-fledge period, we observed movements of Piping Plover broods, and we gathered information on their environment that may affect their behavior. We recorded 191 brood locations, collected 132 focal chick behavior samples, and 113 potential disturbance environmental samples. We used multiple linear regression to evaluate several hypotheses regarding daily and hourly brood movement rates. We also conducted 22 migratory surveys after the breeding season in 2016 at an area in Cape Hatteras National Seashore thought to be used by large numbers of south-bound migrating Piping Plovers. We used integrated Jolly-Seber and binomial count models on resighting and count data to estimate stopover superpopulation and stopover duration of migrating birds based on their breeding region of origin. Annual survival of adults from North Carolina (x ̅ = 0.69, SE = 0.07) was not different from another population on Fire Island, New York (x ̅ = 0.73, SE = 0.04), but the North Carolina population annually had low reproductive success, primarily due to low rates of chick survival. As a result, the North Carolina population was predicted to decline during the study period (λ<1 each year). Historically this population has not met the estimated rate of reproductive output needed for a stationary population (1.07 chicks per pair, SE = 0.69); therefore, it is likely the population is sustained by immigration from an unknown source. Daily (x ̅ = 71.5m/24hr) and hourly (x ̅ = 183.3m/hr) brood movements each had considerable variation (Daily: SD = 70.6, range = 0.0–327.2m; Hourly: SD = 262.3, range = 0.2–1450.9m). Chicks did not appear to move in response to the environmental factors we examined. The rate of brood movement suggests regular daylight monitoring is necessary to adequately protect unfledged broods from anthropogenic disturbance under current management methods. We found that 569 Piping Plovers (95% CI: 502–651), nearly 15% of the estimated Atlantic Coast population, stopped at a single area in Cape Hatteras National Seashore, North Carolina during fall migration. Birds stayed an average 4–7 weeks, depending on the breeding region from which they migrated, and they primarily used a relatively new protected area. These findings suggest that North Carolina is an important area for Piping Plover ecology during multiple stages of their annual cycle. / Master of Science / A federally threatened species, the Piping Plover (Charadrius melodus) lives on sandy beaches along the North American Atlantic Coast. On the coast of North Carolina, Piping Plovers breed in areas with large amounts of recreational and tourism use. To reduce potential negative effects on breeding Piping Plovers from human activities, land managers close areas to pedestrian and vehicle access. However, the plover population there has not appeared to grow as a result of these management strategies, but large numbers of migrant Piping Plovers have capitalized on this management. Recent work that hypothesized population dynamics in North Carolina may function differently than other Piping Plover populations, and this study was designed to test that hypothesis. To understand how disturbance, and attempts to mitigate it, affected plover demography, we studied Piping Plover population dynamics, chick movement, and migration in North Carolina from 2015–2017. We monitored breeding efforts of Piping Plovers and used banding techniques to understand survival of chicks and adults. We observed behavior and movements of Piping Plover chicks before they fledged and gathered information on habitat they selected and potential risks that may alter their behavior. We also conducted migratory surveys after the breeding season at an area thought to be used by large numbers of Piping Plovers. Survival of adult plovers from North Carolina was not substantially different from that of plovers from other areas, but the North Carolina population had low reproductive success caused by low chick survival, and we estimated the population was declining. However, historically this population has not had enough breeding success to maintain itself; therefore, it is likely the population relies on plovers that immigrate to North Carolina from elsewhere. Plover brood movement was variable, and did not move in response to several environmental factors. The rate of brood movements we observed suggest regular daylight monitoring is necessary to adequately protect unfledged broods from anthropogenic disturbance and mortality using current management methods. We found that nearly 15% of Atlantic Coast plovers stopped at a single area in Cape Hatteras National Seashore, North Carolina, during fall migration, staying an average 4–7 weeks. These findings suggest that North Carolina is a unique area to Piping Plover ecology during multiple stages of their annual cycle.
2

Significance of plant gender and mycorrhizal symbiosis in plant life history traits

Varga, S. (Sandra) 09 March 2010 (has links)
Abstract Most plants grow in association with arbuscular mycorrhizal (AM) fungi in their roots forming the so-called AM symbiosis. AM symbiosis is usually beneficial to the host as it improves plant survival and performance. However, AM symbiosis also entails a cost to the plant in terms of the carbon allocated to the fungus. In sexually dimorphic plants, more than one type of individual can be recognised with regard to their sexual expression or gender. The cost of reproduction in these plants will differ in relation to the relative investment in male versus female function, as the female and the male sexual functions incur different costs. This different cost of reproduction may be translated into differences in other plant functions between the sexes as all functions are connected through trade-offs. Therefore, since sexes differ in resource needs and allocation patterns, and AM mediate resource acquisition and allocation patterns through imposing both costs and benefits to the plant, the sexes of dimorphic plant species may possess, at least theoretically, a different relationship with their AM roots symbionts. In this thesis, I have investigated whether the sexes in sexually dimorphic plant species differ in their mycorrhizal relationship, and if so, in which ways. Several plant life history traits were studied in the dioecious species Antennaria dioica and also in the gynodioecious Geranium sylvaticum using greenhouse, common-garden and field experiments. Resource acquisition, resource allocation, and both plant and fungal benefits from AM symbiosis were considered. Mainly beneficial effects of AM symbiosis were observed in both sexes of the two dimorphic plant species for most of the studied plant life history traits. Overall, both partners benefited from the AM association. However, several sex-specific benefits were detected which were not uniformly present in all experiments for any given trait. Moreover, the responses observed in certain life history traits were dependent on both the AM fungal and plant species involved in the symbiosis. Remarkably, plants gained sex-specific benefits from the same species of AM fungi and the fungal benefit differed depending on the sex of the host plant. In addition, mycorrhizal benefits were lost under certain environmental conditions. To summarise, the results obtained in this study highlight the complexity of AM interactions. My results suggest that the plant-mycorrhizal fungus relationship may differ depending on the sex of the host plant. Through sex-specific effects on survival, growth and reproduction of the hosts, AM fungi may play a role in the evolution of the life histories in the studied species. In addition, sex-specific relationships between plants and their mycorrhizal symbionts may have potential important consequences for the population dynamics of the sexual morphs and the coevolution of the mycorrhizal relationship.
3

Breeding System Evolution and Pollination Success in the Wind-Pollinated Herb <i>Plantago maritima</i>

Nilsson, Emil January 2005 (has links)
<p>In this thesis, I examined variation in sex expression and mating patterns in the sexually polymorphic, wind-pollinated herb <i>Plantago maritima</i>. With a combination of field studies, greenhouse experiments, and genetic analyses, I (a) examined factors influencing sex ratio variation in gynodioecious plants (in which hermaphrodites and females coexist), (b) discovered variation in breeding system, (c) investigated density-dependence of seed production, and (d) documented genetic variation within and among populations close to the northern range margin in Europe. </p><p>In a survey of 104 <i>P. maritima</i> populations, I documented considerable variation in sex ratio (range 0-70% females, median 6.3% females). As predicted, females were more frequently missing from small than from large populations, and the variance in sex ratio increased with decreasing population size. Among twelve populations sampled for seed production, the frequency of females was positively related to relative fecundity of females and negatively related to population size. The results suggest that the local sex ratio is influenced both by the relative fecundity of females and hermaphrodites, and by stochastic processes in small populations.</p><p>A comparative field study showed that plant fecundity decreased with increasing distance to nearest pollen donor both within and among populations in an archipelago in southern Sweden, where self-incompatibility was confirmed in controlled crosses. In contrast, plant fecundity was overall higher and was not density-dependent in the Skeppsvik archipelago in northern Sweden, where controlled crosses showed that plants are self-compatible. The results were consistent with the prediction that evolution of self-fertility should reduce density-dependence of pollination success.</p><p>I quantified the genetic structure within and among populations from eastern Sweden and western Finland based on variation at four polymorphic microsatellite loci. The genetic diversity was low in northern Sweden, which may be the result of a history of small population sizes and periods of frequent self-fertilization.</p>
4

Breeding System Evolution and Pollination Success in the Wind-Pollinated Herb Plantago maritima

Nilsson, Emil January 2005 (has links)
In this thesis, I examined variation in sex expression and mating patterns in the sexually polymorphic, wind-pollinated herb Plantago maritima. With a combination of field studies, greenhouse experiments, and genetic analyses, I (a) examined factors influencing sex ratio variation in gynodioecious plants (in which hermaphrodites and females coexist), (b) discovered variation in breeding system, (c) investigated density-dependence of seed production, and (d) documented genetic variation within and among populations close to the northern range margin in Europe. In a survey of 104 P. maritima populations, I documented considerable variation in sex ratio (range 0-70% females, median 6.3% females). As predicted, females were more frequently missing from small than from large populations, and the variance in sex ratio increased with decreasing population size. Among twelve populations sampled for seed production, the frequency of females was positively related to relative fecundity of females and negatively related to population size. The results suggest that the local sex ratio is influenced both by the relative fecundity of females and hermaphrodites, and by stochastic processes in small populations. A comparative field study showed that plant fecundity decreased with increasing distance to nearest pollen donor both within and among populations in an archipelago in southern Sweden, where self-incompatibility was confirmed in controlled crosses. In contrast, plant fecundity was overall higher and was not density-dependent in the Skeppsvik archipelago in northern Sweden, where controlled crosses showed that plants are self-compatible. The results were consistent with the prediction that evolution of self-fertility should reduce density-dependence of pollination success. I quantified the genetic structure within and among populations from eastern Sweden and western Finland based on variation at four polymorphic microsatellite loci. The genetic diversity was low in northern Sweden, which may be the result of a history of small population sizes and periods of frequent self-fertilization.
5

Statut endocrinien et effort de reproduction chez un oiseau marin longévif, le manchot Adélie, dans un environnement changeant / Endocrine status and reproductive effort of a long-lived seabird, the Adélie penguin, in a changing environment

Thierry, Anne-Mathilde 13 September 2013 (has links)
L’étude des mécanismes endocriniens est particulièrement intéressante du fait du rôle majeur des hormones dans la régulation des interactions entre la physiologie d’un organisme, son comportement, et les modifications de son environnement. Cette thèse s’est intéressée aux relations entre le statut hormonal, les performances de reproduction et le succès reproducteur d’un oiseau marin longévif, le manchot Adélie Pygoscelis adeliae, dans un contexte environnemental soumis à des changements. Le statut endocrinien de manchots mâles a été manipulé en utilisant des implants dégradables sous-cutanés diffusant l’hormone d’intérêt ou un inhibiteur de sa sécrétion. Les effets d’une modification des niveaux d’hormones sur l’investissement parental pendant l’incubation ont été mesurés à l’aide d’observations directes et d’oeufsfactices enregistrant les paramètres d’incubation. Les niveaux de corticostérone – hormone dite de stress, de prolactine – hormone des soins parentaux, et de testostérone – hormone liée aux comportements sexuels et à l’agressivité, ont été manipulés. Les effets d’une augmentation des niveaux de corticostérone sur les performances et le succès reproducteur pendant la période de l’élevage des poussins ont également été mesurés. Enfin, les conséquences d’une légère élévation des niveaux de corticostérone pendant l’ensemble de la saison de reproduction en termes de comportement et de succès reproducteur ont été examinées. Une augmentation des niveaux de corticostérone a globalement diminué les performances et le succès de reproduction. D’autre part, une modification des niveaux de prolactine ou de testostérone a affecté la durée etles paramètres d’incubation, suggérant une implication de ces deux hormones dans le contrôle de la phénologie de la reproduction. Les résultats présentés dans cette thèse mettent l’accent sur le fait que la relation entre statut endocrinien et performances de reproduction est dose, état et contexte dépendante. Nos résultats illustrent le rôle majeur des hormones étudiées dans la régulation de l’effort reproducteur, et soulignent également l’importance de considérer les interactions entre les organismes et leur environnement. / Studying endocrine mechanisms is of particular interest because of the major role played by hormones in mediating interactions between an animal’s physiology, its behaviour, and both predictable and unpredictable regimes of environmental variation. During this PhD, I have investigated the relationships between endocrine status, reproductive performance, and reproductive output in a long-lived polar seabird, the Adélie penguin Pygoscelis adeliae, while integrating environmental parameters for some of the studies. The endocrine status of male penguins was experimentally modified using subcutaneous self-degradable pellets, which released either the hormone or an inhibitor of its secretion. The effects of changes in the levels of several hormones on the parental investment during incubation were assessed, using direct observations and dummy eggs to record incubation parameters. The levels of corticosterone – the so-called stress hormone, prolactin – the parental care hormone, and testosterone – the sexual behaviour and aggressiveness hormone, were manipulated. The effects of increased corticosterone levels on reproductive performance and output were also evaluated during the chick-rearing period. Finally, the behavioural consequences of a moderate elevation of corticosterone levels during the whole breeding cycle were assessed. On the whole, an increase in corticosterone levels decreased reproductive performances and output. Changes in prolactin or testosterone levels affected incubation duration and egg temperature, suggesting a role for these hormones in the control of the timing of breeding. The results prevented in this PhD highlight the fact that the relationship between endocrine status and reproductive performance is dose-, state-, and context-dependant. Our results illustrate the major role of the hormones considered in our studies in the regulation of reproductive effort. They also underline the importance of considering the interactions of organisms with their environment in studies of animal behaviour and ecophysiology.

Page generated in 0.0657 seconds