• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 8
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Discussão sobre a utilização de gases combustíveis para aquecimento de água no setor residencial no Brasil: uma análise SWOT / Discussion about the use of fuel gases in residential water heating in Brazil: A \"SWOT\" analysis

Johann, Danielle 10 February 2015 (has links)
Com o aumento do consumo de energia elétrica no Brasil, em função de fatores como o aumento da renda per capita e o maior acesso da população aos sistemas de suprimento, justifica-se a procura por fontes alternativas de energia. Esta Dissertação aborda o consumo energético residencial e analisa o papel do aquecimento de água para banho, que representa uma sobrecarga para infraestrutura elétrica no Brasil. O trabalho apresenta uma visão crítica em relação à predominância da eletricidade nesse uso final da energia, já que mais de 80% das residências brasileiras aquecem água para banho com chuveiros elétricos. Propõe-se a utilização de gases combustíveis para o aquecimento de água em residências, identificando que, em vários países do mundo, esse é um uso energético relativamente trivial dos gases combustíveis. A mera comparação internacional peca, porém, em não identificar as particularidades do sistema energético nacional, dentro das quais insere-se a predominância da eletricidade no aquecimento de água. O trabalho descreve os aspectos históricos, sociais, tecnológicos e econômicos que sustentam essa situação e apresenta as dificuldades que inibem iniciativas de promoção da substituição da eletricidade por gases combustíveis nesse serviço energético. A discussão é apresentada por meio da metodologia \"SWOT\", que conduz a uma análise comparativa abrangente entre os chuveiros elétricos e os aquecedores a gás. A metodologia utilizada é sintetizada e sua aplicação enfatiza quatro aspectos principais: tecnológicos, regulatórios, culturais e econômicos. A partir dos resultados apresentados, a Dissertação recomenda ações específicas para cada uma das quatro dimensões analisadas, que permitam ampliar a utilização do uso de gases combustíveis para aquecimento de água nas residências brasileiras, diversificando, portanto, a matriz energética desse segmento e reduzindo a participação relativa da eletricidade. O trabalho encerra com sugestões de temas cuja pesquisa merece ser aprofundada, bem como indicando que várias das críticas aqui apresentadas também são relevantes para a discussão do papel da energia solar térmica em ambientes residenciais no Brasil. / With the increase in electricity consumption in Brazil, due to factors such as increased per capita income and greater access of the population to supply systems, is justified the search for alternative energy sources. This dissertation adresses the residential energy consumption and examines the role of heating water for bathing, which is a burden on electrical infrastructure in Brazil. The paper presents a critical view of the predominance of electricity in final energy use, since more than 80% of Brazilian homes heat water to bath with electric shower. It is proposed the use of combustible gases for heating water in homes, identifying that in many countries, this is a relatively trivial energy use of mere international comparison sins, but not to identify the particularities of national energy system, within which is part of the dominance of electricity in water heating. The work describes the historical, social, technological and economic aspects that sustain this situation and shows the difficulties that inhibit initiatives to promote the substitution of electricity for combustible gases that energy service. The discussion is presented through the SWOT methodology, leading to a comprehensive comparative analysis of the electric showers and gas heaters. The SWOT methodology is synthesized and its application emphasizes four main aspects: technological, regulatory, cultural and economic. From the results presented, the dissertation recommends specific actions for each of the four dimensions analyzed, which can widen the use of the use of domestic gas for water heating in the Brazilian households, diversifying therefore the energy matrix of this segment and reducing the share on electricity. The work concludes with suggestions for topics whose research deserves to be thorough as well as indicating that several of the criticisms presented here are also relevant to the discussion of the role of solar energy in residential environments in Brazil.
12

Discussão sobre a utilização de gases combustíveis para aquecimento de água no setor residencial no Brasil: uma análise SWOT / Discussion about the use of fuel gases in residential water heating in Brazil: A \"SWOT\" analysis

Danielle Johann 10 February 2015 (has links)
Com o aumento do consumo de energia elétrica no Brasil, em função de fatores como o aumento da renda per capita e o maior acesso da população aos sistemas de suprimento, justifica-se a procura por fontes alternativas de energia. Esta Dissertação aborda o consumo energético residencial e analisa o papel do aquecimento de água para banho, que representa uma sobrecarga para infraestrutura elétrica no Brasil. O trabalho apresenta uma visão crítica em relação à predominância da eletricidade nesse uso final da energia, já que mais de 80% das residências brasileiras aquecem água para banho com chuveiros elétricos. Propõe-se a utilização de gases combustíveis para o aquecimento de água em residências, identificando que, em vários países do mundo, esse é um uso energético relativamente trivial dos gases combustíveis. A mera comparação internacional peca, porém, em não identificar as particularidades do sistema energético nacional, dentro das quais insere-se a predominância da eletricidade no aquecimento de água. O trabalho descreve os aspectos históricos, sociais, tecnológicos e econômicos que sustentam essa situação e apresenta as dificuldades que inibem iniciativas de promoção da substituição da eletricidade por gases combustíveis nesse serviço energético. A discussão é apresentada por meio da metodologia \"SWOT\", que conduz a uma análise comparativa abrangente entre os chuveiros elétricos e os aquecedores a gás. A metodologia utilizada é sintetizada e sua aplicação enfatiza quatro aspectos principais: tecnológicos, regulatórios, culturais e econômicos. A partir dos resultados apresentados, a Dissertação recomenda ações específicas para cada uma das quatro dimensões analisadas, que permitam ampliar a utilização do uso de gases combustíveis para aquecimento de água nas residências brasileiras, diversificando, portanto, a matriz energética desse segmento e reduzindo a participação relativa da eletricidade. O trabalho encerra com sugestões de temas cuja pesquisa merece ser aprofundada, bem como indicando que várias das críticas aqui apresentadas também são relevantes para a discussão do papel da energia solar térmica em ambientes residenciais no Brasil. / With the increase in electricity consumption in Brazil, due to factors such as increased per capita income and greater access of the population to supply systems, is justified the search for alternative energy sources. This dissertation adresses the residential energy consumption and examines the role of heating water for bathing, which is a burden on electrical infrastructure in Brazil. The paper presents a critical view of the predominance of electricity in final energy use, since more than 80% of Brazilian homes heat water to bath with electric shower. It is proposed the use of combustible gases for heating water in homes, identifying that in many countries, this is a relatively trivial energy use of mere international comparison sins, but not to identify the particularities of national energy system, within which is part of the dominance of electricity in water heating. The work describes the historical, social, technological and economic aspects that sustain this situation and shows the difficulties that inhibit initiatives to promote the substitution of electricity for combustible gases that energy service. The discussion is presented through the SWOT methodology, leading to a comprehensive comparative analysis of the electric showers and gas heaters. The SWOT methodology is synthesized and its application emphasizes four main aspects: technological, regulatory, cultural and economic. From the results presented, the dissertation recommends specific actions for each of the four dimensions analyzed, which can widen the use of the use of domestic gas for water heating in the Brazilian households, diversifying therefore the energy matrix of this segment and reducing the share on electricity. The work concludes with suggestions for topics whose research deserves to be thorough as well as indicating that several of the criticisms presented here are also relevant to the discussion of the role of solar energy in residential environments in Brazil.
13

The Role of Energy Efficiency in the Private Housing Sector - The Case of Santiago de Chile / El Rol de la Eficiencia Energética Residencial en el Sector Privado - El Caso de Santiago de Chile

Mercado Fernández, José Luis 22 October 2015 (has links) (PDF)
In the international context, this research analyzes the state of the art of scientific discussion, the action exerted by national and local governments through regulations, and the opinion of professionals in the field of construction of buildings in relation to the implementation of energy efficiency measures in buildings. In general, the interest in the different areas has been driven primarily by: 1) the worldwide increased energy consumption in buildings, emphasizes by an increasingly urbanized world and the resource scarcity for power generation, primarily fossil fuels; 2) the increase in greenhouse gas emissions related to the buildings' construction and operation; and 3) the thermal behaviour of the building's envelope, which determines the energy demand for thermal conditioning; mainly for heating in winter and cooling in summer. The foregoing has resulted in the implementation of different types of energy efficiency measures in the building sector around the world. On the one hand, through mandatory measures, driven by national and local governments through building codes; mandatory measures require that when building a new building or refurbishing an existing one, the architects, private developers, or builders must comply with building standards that govern the thermal performance of the different elements of the buildings' thermal envelope. On the other hand, by implementing voluntary measures, such as international certification systems, established by non-governmental institutions, aimed at legitimizing the efforts of building owners, design teams, and builders to design, build, and operate buildings in an environmentally friendly way. The latter has triggered an international trend and an increasing demand for certification of the so-called "green buildings". Such independent certification systems seek to reduce the environmental impact of activities in the construction sector. In the Chilean context, this research analyzes the relationship between two main pillars of the Chilean economy, the energy sector and the private housing sector. Particularly, this research focuses on the implementation of energy efficiency measures in the private housing market in Santiago, the Chilean capital. From the energy perspective, the high vulnerability for power generation by the dependence on the provision of gas from neighbouring countries and periods of drought affecting hydroelectric power generation, has led to the Chilean government intervention. Government intervention is centred on two main lines of action: 1) the diversification of the country's energy matrix, through the implementation of alternative systems for power generation based on non-conventional renewable energy sources; and 2) the implementation of energy efficiency measures. In the construction sector, the latter is expressed by the entry into force of the New Thermal Regulations for new residential buildings in three stages in the building code since 2000. With the implementation of new regulations in the construction sector in the Chilean context and the growing demand for green building in the international context, private real estate companies and construction companies, which are the backbone of the construction sector in Chile, have reacted by offering energy efficient real estate products in Santiago de Chile. Based on the foregoing, arises the main question leading this doctoral thesis: How do real estate developers apply energy efficiency in their housing offer in Santiago de Chile? The main research question is further refined by three sub questions: 1) who are the real estate developers that are adopting energy efficiency and why? This is a compound question, first it seeks to identify real estate companies adopting energy efficiency measures in Santiago de Chile’s private housing market; then it looks into the motivations for doing so; 2) what types of energy efficiency measures are real estate companies adopting? This sub-research question seeks to identify the adopted residential energy efficiency strategies; and 3) which barriers to further implementation of energy efficiency exist? It seeks to identify the setbacks found by energy efficiency adopters in the implementation process, in order to understand local issues in the adoption process. The Case Study and Selection of Sub-Cases for the Analysis The research focuses on the voluntary implementation of residential energy efficiency measures in the private housing market; moreover, it analyzes the case of Santiago de Chile. Therefore, the focus is set on real estate companies that offer energy efficient housing in their offer for real estate products in the metropolitan region. The selection of embedded sub-cases for the analysis, or sub-cases, was made by applying a criterion sampling strategy known as purposive sampling. For this, a thorough review of 568 private real estate companies' websites, offering different real estate products in the Metropolitan Region of Santiago de Chile between June and July 2011, was performed. Out of this group, a set of 45 companies that offering energy efficient homes mentioned were selected. Later on, personal interviews mainly with general managers of real estate development companies and other actors considered key informants because of their knowledge in the field, such as scholars, representatives from public institutions, other public and private research centres, and practitioners, were conducted between April and May 2012. Main Methods and Data Analysis Research is conducted under a qualitative approach, as it focuses primarily on the opinion of real estate companies’ CEOs and other key informants considered information rich when helping answering the research questions. The main tool for data analysis was the thematic content analysis. Main Findings The main results of this research are structured on the basis of the answering the secondary research questions or sub-questions. Who are the real estate developers that are adopting energy efficiency and why? As it was mentioned above, the first part of this compound sub-question seeks to identify the real estate companies that are implementing residential energy efficiency measures in their offer in the housing market in Santiago de Chile. A set of 45 real estate companies were identified because they mentioned to be applying some sort of energy efficiency measures. This was a rather small group since, at that time, 568 real estate companies were offering housing products. Based on the empirical findings, a categorization of real estate companies following the Roger’s model was conducted. Thus, real estate companies were categorized depending on when they began adopting residential energy efficiency measures in their housing offer. The three stages of the New Thermal Regulation issued for the housing sector in Chile were selected as time-milestones for defining the adopter categories. Accordingly, three main categories emerged following Roger’s model. 1) Innovators, includes real estate companies who adopted energy efficiency measures for the first time before the entry into force of the first stage of the NRT in 2000; 2) Early Adopters, groups real estate companies who adopted residential energy efficiency measures for the first time between the first and second stage of the New Thermal Regulation, that is to say between 2001 and 2007; and 3) Early Majority, includes real estate companies who began to apply residential energy efficiency measures starting in 2008, meaning after the second stage of New Thermal Regulation came into force. The empirical evidence suggests that the adoption process of energy efficiency measures has started following the normal development described by Rogers' innovation curve. Therefore, it is expected that the rest of the real estate developers operating in the private housing market in Santiago de Chile will eventually follow the Innovators, Early Adopters, and Early Majority categories. This is mainly due to the recent introduction of thermal regulation by the government and because the housing market is a highly competitive market, in which none of the players can risk to be left behind. The second part of the sub-research question, and probably the most important one, seeks to understand the motivations for real estate companies to offer and implement energy-efficient real estate products in Santiago de Chile’s private housing market. This research identifies the motivations of real estate development companies in the opinion of their managers collected in personal semi-structured interviews conducted during fieldwork. Based on the thematic analysis of the abovementioned interviews, four categories of motivations for offering and applying energy efficiency were identified based on the company managers’ opinion. These categories, in order of preference are: 1) Market Differentiation Strategies (Competitiveness and Trending); 2) Company Policies (Client-Oriented Policies, Innovation Policies, and Environmentally-friendly Policies); 3) Resource efficiency (Reduction of Household\'s Expenses and Concerns for Energy Scarcity); and 4) Government Incentive Schemes (Subsidies to the Use of Renewable Energy). Briefly, the main motivations for adopting energy efficiency measures in the private housing offer are related to marketing strategies. In general, real estate companies operating in Santiago de Chile are looking to distinguish themselves from their competitors by offering energy-efficient housing products. This is mainly because real estate companies are following a trend that is driven by several factors such as: local energy shortage periods, the international influence of green buildings in the real estate market, and the growing demand for international certifications in the Chilean context. What types of energy efficiency measures are real estate companies adopting? As mentioned earlier, this research identifies real estate companies offering energy-efficient housing in the private real estate market of Santiago de Chile who implemented a diversity of energy efficiency strategies in their housing supply, as the empirical evidence shows. Although the motivations for implementing energy efficiency measures are diverse (as described previously), energy efficiency measures are mainly implemented in order to reach a comfort temperature inside the dwelling, making all possible efforts to ensure that energy is used efficiently. In the case of the residential buildings, this means looking for the optimal use of energy for space heating or cooling, lighting, hot sanitary water, and ventilation. In general, depending on whether there is the need to make an additional energy effort in order to achieve optimum indoor comfort conditions, the energy efficiency measures implemented in the private housing sector in Santiago de Chile can be grouped into two main categories of energy efficiency strategies: passive design strategies and active design strategies. On the one hand, passive design strategies refer to what real estate developers are doing to reduce the energy consumption of their housing buildings. Such strategies include: 1) improving the overall thermal performance of the building envelope; 2) the use of renewable energy, mainly solar thermal and photovoltaic technology, for hot sanitary water and energy conversion respectively; and 3) bioclimatic design and construction principles. As it was mentioned in Section 6.1, a basic characteristic of passive design strategies, distinguishing them from active design strategies, is that in order to operate they rely on the building site and the inherited thermal properties of the building materials used in the different housing building typologies. On the other hand, active design strategies refer to the technological innovations implemented in order to maintain an optimal indoor thermal conditioning and to reduce the energy used in the different buildings’ systems; namely, 1) illumination systems; 2) heating systems; 3) centralized control systems; and 4) air conditioning systems. In general, real estate developers adopted active design strategies as a complement to the use of passive design strategies. Not surprisingly, real estate developers have mentioned the improvement of the thermal envelope as the most commonly used residential energy efficiency strategy. This results from the fact that internationally and in Chile, regulations in the housing sector were implemented in order to improve the thermal behaviour of dwellings, and therefore, their energy efficiency. Finally, a third type of energy efficiency strategy adopted by real estate developers in Santiago de Chile is the result of a public-private partnership between the Chilean Government and the Chilectra, the local electricity utility. The initiative is called “Chilectra – Full Electric Buildings” and it offers an optional electrical energy tariff for residential consumers. This strategy is further explained in Section 6.3. Which barriers to further implementation of energy efficiency exist? Based on the opinion of the various key stakeholder involved in this research, this research shows that most barriers to energy efficiency in the private housing sector in Santiago de Chile interact and strengthen each other. The classification of barriers to further implementation of energy efficiency is not straightforward. Nonetheless, in the opinion of real estate companies’ managers, the barriers to adopting energy efficiency measures in the private housing market in Santiago de Chile revolve around the specific characteristics of the local social system. These barriers are: 1) market barriers; 2) organizational barriers; 3) institutional barriers; and 4) behavioural barriers. In relation to the categorization of energy efficiency adopters identified in the first sub-question, the empirical evidence seems to indicate that, not all the barriers play the same role for all adopter categories. In general, market barriers are most relevant to the innovators group. Although most of the real estate developers mentioned that even today the local market and the local construction industry are not ready to provide adequate support (both in the availability of products and services) for further development of the market for energy efficient construction, the deficiency was greater 20 years ago, when the innovators first started to implement residential energy efficiency measures in the private housing sector. Moreover, the other barriers encountered (namely organizational and institutional barriers) are transversal to the adopter categories. This seems to drawn from the organizational and institutional characteristics of the context in which private real estate companies operate. The context remains constant over time and their internal relationships are also maintained, homogeneously affecting all adopter categories. Finally, barriers related to end users and/or clients’ behaviour are mainly listed by early majority adopters, which comprises developers who implement residential energy efficiency measures recently (after 2000). Apparently, this results mainly from the fact that end user are lacking information about the benefits (general and local) to be gained from implementing residential energy efficiency measures.
14

Comportement des ménages en matière de consommation d'électricité : une meta-analyse et des approches expérimentales / Household electricity consumption behaviour : a meta-analysis and experimental approaches

Buckley, Penelope 03 May 2019 (has links)
Cette thèse examine comment répondent des consommateurs aux mécanismes visant à réduire leur consommation d'énergie. Ce besoin de réduction découle de la nécessité d'atteindre les objectifs de réduction d'émissions de gaz à effet de serre, d'augmenter la production d'énergie à partir d'énergie renouvelables et de réaliser des économies d'énergie. Ces objectifs exigent que la demande résidentielle soit plus flexible face à l'évolution de l'offre et que des économies d'énergie soient réalisées par les ménages. Le premier chapitre explore les barrières à l'acceptation et à l'adoption des compteurs intelligents et des incitations qu'ils peuvent fournir. D'importantes barrières existent et les réductions de consommation sont loin d'être réalisées. Le manque de motivation, l'incompréhension de l'information sur la consommation et la rigidité de la vie quotidienne sont les principales barrières qui limitent la réponse des ménages aux incitations fournies par les compteurs intelligents. Le deuxième chapitre analyse les résultats d'expériences de terrain et d'études pilotes portant sur les impacts des différentes incitations sur la consommation résidentielle. Les résultats montrent qu'il existe de grandes variations et qu'en moyenne, une incitation entraînera une réduction de 2% de la consommation d'énergie. Les incitations de feedback en temps réel ainsi que l'information monétaire ont le plus grand effet. Enfin, les études plus robustes font état d'effets de réduction plus faibles. Dans le troisième chapitre, un jeu expérimental de ressources communes est utilisé pour explorer les réponses individuelles aux incitations basées sur le prix et les nudges. Les individus sont encouragés à réduire leur consommation, soit par une augmentation de prix, soit par des smiley évocant leur surconsommation. Le prix est le plus efficace pour encourager le niveau cible de consommation, mais il faut plus de temps pour qu'il fasse effet. Le nudge est compris rapidement mais tend à renforcer les comportements de surconsommation. Le quatrième chapitre examine l'effet du framing sur la disposition à l'effort. Les individus doivent accomplir une tâche simple et répétitive pour laquelle ils reçoivent un paiement à la pièce sous forme d'un gain ou d'une perte. Le framing sous forme de gains et de pertes est combiné à trois structures de paiement différentes : gain fixe, gain faible ou élevé avec une probabilité égale révélée avant ou après la réalisation de l'effort. Les résultats montrent que le framing n'a aucun effet sur la réalisation de l'effort, excepté pour un contexte de gain élevé annoncé avant de fournir l'effort. / This thesis examines how consumers respond to incentives used to encourage a reduction in their energy consumption. This necessary reduction stems from the need to reduce greenhouse gas emissions, increase energy production from renewable energy sources and achieve energy savings. These objectives require that residential demand be more flexible in response to changes in supply and that energy savings be achieved by households. The first chapter explores the barriers to consumer acceptance and adoption of smart meters and the incentives that they provide. Significant barriers exist and consumption reductions are far from being achieved. Limited motivation, lack of understanding of information on consumption and the rigidity of daily life are the main barriers preventing households from acting upon the incentives delivered via smart meters. The second chapter analyses the results of field experiments and pilot studies on the impacts of different incentives on residential consumption. The results show that there are large variations and that, on average, an incentive will result in a 2% reduction in energy consumption. Real-time feedback and monetary information have the greatest effect. Finally, more robust studies report lower reduction effects. In the third chapter, a common pool resource game is used to explore individual responses to price and nudge-based incentives. Individuals are encouraged to reduce their consumption either by price increases or by smilies that reflect their overconsumption. The price is most effective at encouraging the target level of consumption but takes longer to have an effect. The nudge is quickly understood but tends to reinforce overconsumption behaviours. The fourth chapter examines the effect of framing on effort provision. Individuals are asked to complete a simple and repetitive task for which they receive a piece-rate payoff in the form of a gain or loss. Framing in the form of gains and losses is combined with three different payment structures: fixed gain, low gain or high gain with an equal probability revealed before or after the effort is made. The results show that framing has no effect on effort provision, except for a high gain context announced before making the effort.
15

New Residential Thermostat for Transactive Systems

Chassin, David P. 16 December 2014 (has links)
This thesis presents a residential thermostat that enables accurate aggregate load control systems for electricity demand response. The thermostat features a control strategy that can be modeled as a linear time-invariant system for short-term demand response signals from the utility. This control design gives rise to linear time-invariant models of aggregate load control and demand response, which is expected to facilitate the design of more accurate load-based regulation services for electricity interconnections and enable integration of more highly variable renewable electricity generation resources. A key feature of the new thermostat design is the elimination of aggregate short-term load control error observed with existing real-time pricing thermostats as they respond to price signals. / Graduate / 0548 / 0791 / 0544 / dchassin@uvic.ca
16

Modélisation dynamique de l'offre et de la demande énergétique des territoires ruraux : application au secteur résidentiel / Dynamic modelling of energy demand and production in rural areas : case study of the residential sector

Peigné, Pierre 12 March 2018 (has links)
Les territoires ruraux disposent du principal gisement d’énergie renouvelable en France. Les réseaux énergétiques y sont moins denses que dans les zones urbaines et certains vecteurs, tels que le gaz, en sont souvent absents. Or, alors que les systèmes énergétiques urbains ont été abondamment étudiés, les spécificités de la demande énergétique rurale restent méconnues, notamment dans le secteur résidentiel. Des travaux récents mettent en avant les enjeux liés à la décentralisation du système énergétique français et le besoin d’une connaissance fine de l’offre et de la demande, tant sur le plan spatial que temporel. Ce travail de thèse poursuit deux objectifs. Tout d’abord il s’attache à identifier les spécificités de la consommation énergétique des logements ruraux par rapport aux logements urbains. Ensuite, il vise à analyser la réponse que peut apporter le gisement local d’énergie renouvelable à la demande résidentielle sur un territoire mixte urbain-rural, dans une optique de territoire à énergie positive – équilibre annuel entre l’offre et la demande énergétique du territoire. / Rural areas have the main resources of renewable energy in France. Energy networks are less dense there than in urban areas and some energy vectors, like gas, are often missing. However, as urban energy systems have been widely studied, the specificities of rural energy demand remain little-known, especially for the residential sector. Recent works highlight new challenges related to decentralization of the French energy system and the need for fine knowledge of demand and supply, on both spatial and time scales. This research work pursues two objectives. First, it commits to identify the specificities of rural housing energy consumption. Then, it aims at analyzing the potential response of local renewable energy sources to the residential demand in a mixed urban-rural territory, in a 100 % RES process – equilibrium between annual energy demand and supply on the territory.
17

Campo térmico e consumo de energia elétrica residencial na cidade de São Carlos-SP

Azevedo, Juliana Antunes de 16 November 2010 (has links)
Made available in DSpace on 2016-06-02T20:00:35Z (GMT). No. of bitstreams: 1 3359.pdf: 7404419 bytes, checksum: e21d234f78aa4491dbcb6e7fab2e1482 (MD5) Previous issue date: 2010-11-16 / Financiadora de Estudos e Projetos / One of the main changes observed in cities today are the changes of the urban climate in relation to its surrounding areas. Differences in thermal field of a city may interfere in the residential energy consumption, being its study relevant, once the energy is precondition so that essential facilities and benefits of modern life can be enjoyed. From this, this work has as objective establishment of relationships between the thermal field and residential energy consumption in the city of São Carlos-SP, for different scales of approach and based on some parameters of urban morphology. In the methodology three variables were worked: the urban morphology, the climate and energy consumption. In the specific case of variable the climate, this was studied in two scales: the scale micro-scale and mesoscale. Methodological work steps were: inventory, bibliographic review, selection of control points, climate study on micro-scale (composed by substeps: climatic data processing, calculation of sky view factor, calculation of occupancy rate and index of exploitation and calculation of the vegetation index), study of climate on meso-scale (composed by substeps: estimation of radiometric temperature, calculation of the vegetation index and multicriterium analysis), study of energy consumption and finally data analysis. The results confirmed that the morphological influence on thermal field in micro-scale and meso-scale. In the microscale the exploiting index, sky view factor and average height indicated behaviors as described in the bibliography for the average, maximum and minimum temperature data, while the occupancy rate has the behavior described in the bibliography for amplitude. In meso-scale vegetation was evaluated as a factor of biggest influence on the climate. The residential energy consumption presented coherent distribution with changes in thermal field; however, this changes shall also be related to social classes of regions, since these have varying patterns of use. Regarding geoprocessing techniques used in the methodology, it was observed that the algorithms, kriging and multicriterium analysis were useful in the research, however the vegetation index, despite being simple execution, did not provided for micro-scale the desirable results. / Uma das principais modificações observadas nas cidades na atualidade são as alterações das condições climáticas em relação às áreas circunvizinhas, resultando em um clima diferenciado nas áreas urbanas. As diferenças no campo térmico de um município interferem no consumo de energia elétrica residencial, sendo seu estudo relevante, uma vez que, a energia elétrica é condição indispensável para que as comodidades e benefícios essenciais da vida moderna possam ser desfrutados. A partir disto, este trabalho teve como objetivo estabelecer relações entre o campo térmico e consumo de energia elétrica residencial na cidade de São Carlos-SP, para diferentes escalas de abordagem e em função de alguns parâmetros da morfologia urbana. Na metodologia foram trabalhadas três variáveis de estudo: a morfologia urbana, o clima e o consumo energético. No caso específico da variável clima, esta foi estudada em duas escalas: a micro-escala e a mesoescala. As etapas metodológicas do trabalho foram: inventário, revisão bibliográfica, seleção de pontos de controle, estudo do clima na micro-escala (composta pelas sub-etapas: processamento de dados climáticos, cálculo de fator de visão do céu, cálculo de taxa de ocupação e índice de aproveitamento e cálculo de índice de vegetação), estudo do clima na meso-escala (composta pelas sub-etapas: estimativa da temperatura radiométrica, cálculo do índice de vegetação e análise multicritério), estudo do consumo energético e por fim análise dos dados. Os resultados obtidos confirmaram que os parâmetros morfológicos influenciam no campo térmico em micro-escala e meso-escala. Na micro-escala o índice de aproveitamento, fator de visão do céu e altura média indicaram comportamentos como descrito na bibliografia em relação a médias, máximas e mínimas, enquanto a taxa de ocupação apresentou o comportamento indicado na bibliografia perante a amplitude. Na meso-escala a vegetação apresentou-se como fator de maior influência no clima. O consumo de energia elétrica residencial apresentou uma distribuição coerente com as variações do campo térmico, entretanto, esta variação deve ser relacionada também às classes sociais das regiões, já que estas possuem padrões de consumo variados. Quanto às técnicas de geoprocessamento utilizadas na metodologia, foi observado que os algoritmos de krigagem e análise multicritério foram úteis na investigação, já o índice de vegetação, apesar de ser de simples execução, não apresentou para micro-escala os resultados desejados.
18

Optimisation and operation of residential micro combined heat and power (μCHP) systems

Shaneb, Omar Ali January 2012 (has links)
In response to growing concerns regarding global warming and climate change, reduction of CO2 emissions becomes a priority for many countries, especially the developed ones such as the UK. Residential applications are considered among the most important areas for substantial reduction of CO2 emissions because they represent a major part of the total consumed energy in those countries. For instance, in the UK, residential applications are currently accountable for about 150 Mt CO2 emissions, which represents approximately 25% of the whole CO2 emissions [1-2]. In order to achieve a significant CO2 reduction, many strategies must be adopted in the policy of these countries. One of these strategies is to introduce micro combined heat and power (μCHP) systems into residential energy systems, since they offer several advantages over traditional systems. A significant amount of research has been carried out in this field; however, in terms of integrating such systems into residential energy systems, significant work is yet to be conducted. This is because of the complexity of these systems and their interdependency on many uncertain variables, energy demand of a house is a case in point. In order to achieve such integration, this research focuses on the optimisation and operation of μCHP systems in residential energy systems as essential steps towards integration of these systems, so it deals with the optimisation and operation of a μCHP system within a building taking into account that the system is grid-connected in order to export or import electricity in certain cases. A comprehensive review that summarises key points that outline the trend of previous research in this field has been carried out. The reviewed areas include: technologies used as residential μCHP units, modelling of the μCHP systems, sizing of μCHP systems and operation strategies used for such systems. To further this, a generic model for sizing of μCHP system’s components to meet different residential application has been developed by the author. Two different online operation strategies of residential μCHP systems, namely: an online linear programming optimiser (LPO) and a real time fuzzy logic operation strategy (FLOS) have been developed. The performance of the novel online operation strategies, in terms of their ability to reduce operation costs, has been evaluated. Both the LPO and the FLOS were found to have their advantages when compared with the traditional operation strategies of μCHP systems in terms of operation costs and CO2 emissions. This research should therefore be useful in informing design and operation decisions during developing and implementing μCHP technologies in residential applications, especially single dwellings.
19

Activating Community to Enable Residential Energy Efficiency

Roswell, David 16 December 2013 (has links)
No description available.
20

Modellierung von Wasser und Energieverbräuchen in Haushalten

Pflugradt, Noah Daniel 26 August 2016 (has links) (PDF)
In dieser Arbeit wird ein Modell für die Simulation des Verbraucherverhaltens in Haushalten entwickelt. Das Ziel ist die Erstellung von Lastprofilen für den Strom- und Wasserverbrauch. Das Modell wird in einem Programm implementiert. Die Ergebnisse werden anschließend validiert und verschiedene Kenngrößen mit Literaturwerten verglichen. Abschließend wird eine Parameterstudie durchgeführt, um den Einfluss verschiedener Faktoren wie z.B. das Arbeitszeitmodell oder die Feiertagsmodellierung auf Lastprofile zu quantifizieren. Das Modell basiert auf einem Bedürfnismodell aus der Psychologie und ermöglicht den Verzicht auf die Errechnung von Aktivitäts-Wahrscheinlichkeitsverteilungen. / In this thesis a model for the simulation of the behaviour of people in residential households is introduced. The goal is to generate load profiles for residential electricity and water consumption. The model is implemented as a Windows program. The results are validated and various metrics are compared with literature values. A parameter study is performed to quantify the influence of various factors such as the working hours or the influence of holidays on the load profile. The model is based on a desire model from the field of psychology and makes it possible to avoid calculating any probabilty distributions.

Page generated in 0.1088 seconds